Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Physiol ; 190(2): 1260-1274, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-35861433

RESUMEN

Grain size is one of the crucial factors determining grain yield. However, the genetic and molecular mechanisms of florigen repression complexes (FRCs) underlying grain size in rice (Oryza sativa L.) have not been reported. Here, we report that the rice CENTRORADIALIS (CEN) family member OsCEN2 (also known as Rice TFL1/CEN homolog, RCN1), a phosphatidylethanolamine-binding protein (PEBP) family protein, negatively controls grain size in rice. Overexpression of OsCEN2 led to small grains, and knockout of OsCEN2 resulted in large, heavy grains. OsCEN2 influenced grain size by restricting cell expansion in the spikelet hull and seed filling. In in vivo and in vitro experiments, OsCEN2 physically interacted with a G-box factor 14-3-3 homolog, GF14f, which negatively regulates grain size. Bimolecular fluorescence complementation and yeast two-hybrid assays revealed that GF14f directly interacts with the basic leucine zipper (bZIP) transcription factor, OsFD2. Plants overexpressing OsFD2 produced smaller and lighter grains than wild-type plants. We found that OsFD2 also influences grain size by controlling cell expansion and division in the spikelet hull. Our results reveal the molecular mechanisms of the OsCEN2-GF14f-OsFD2 regulatory module in controlling grain size. Additionally, our study provides insight into the functions of the FRC in rice and suggests a strategy for improving seed size and weight.


Asunto(s)
Oryza , Grano Comestible/genética , Grano Comestible/metabolismo , Florigena/metabolismo , Regulación de la Expresión Génica de las Plantas , Oryza/metabolismo , Proteínas de Unión a Fosfatidiletanolamina/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo
2.
Theor Appl Genet ; 135(12): 4245-4259, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36181524

RESUMEN

KEY MESSAGE: A FT/TFL1 subfamily gene, rice CENTRORADIALIS 2, also known as RCN1, regulates seed germination and increase salt tolerance via ABA-mediated pathway. The ABA synthesis and metabolism related genes were changed relative expression levels. Seed germination is a complex biological process that is affected by many factors. Although a number of germination-related genes have been reported, the molecular mechanism of germination regulation has not yet been fully elucidated. Here, we reported that the rice OsCEN2 gene can negatively regulate seed germination. The germination speed of OsCEN2-RNAi seeds was significantly faster while that of OsCEN2-overexpression (OE) seeds was slower than that of the wild type (WT). The results of qRT-PCR showed that the OsCEN2 expression was increased in the early stage of seed germination. Exogenous application of abscisic acid (ABA) on seeds and seedlings showed that OsCEN2-OE seeds and seedlings were highly sensitive to ABA during germination and post-germination growth, respectively. The determination of endogenous ABA content in seeds also showed that the ABA content of OsCEN2-RNAi seeds was lower, while that of OsCEN2-OE seeds was higher. Moreover, the transgenic plants changed salt tolerance because of the altered ABA level. In addition, differences were also observed in the expression of genes related to ABA synthesis and metabolism in the seeds of OsCEN2-transgenic lines. This study reveals that OsCEN2 regulates the germination speed by affecting the content of ABA during seed germination and provides a theoretical basis for research on rice direct seeding.


Asunto(s)
Arabidopsis , Oryza , Ácido Abscísico/metabolismo , Germinación/genética , Tolerancia a la Sal/genética , Semillas/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA