Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Interdiscip Sci ; 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38381315

RESUMEN

Circular RNAs (circRNAs) are non-coding RNAs generated by reverse splicing. They are involved in biological process and human diseases by interacting with specific RNA-binding proteins (RBPs). Due to traditional biological experiments being costly, computational methods have been proposed to predict the circRNA-RBP interaction. However, these methods have problems of single feature extraction. Therefore, we propose a novel model called circ-FHN, which utilizes only circRNA sequences to predict circRNA-RBP interactions. The circ-FHN approach involves feature coding and a hybrid deep learning model. Feature coding takes into account the physicochemical properties of circRNA sequences and employs four coding methods to extract sequence features. The hybrid deep structure comprises a convolutional neural network (CNN) and a bidirectional gated recurrent unit (BiGRU). The CNN learns high-level abstract features, while the BiGRU captures long-term dependencies in the sequence. To assess the effectiveness of circ-FHN, we compared it to other computational methods on 16 datasets and conducted ablation experiments. Additionally, we conducted motif analysis. The results demonstrate that circ-FHN exhibits exceptional performance and surpasses other methods. circ-FHN is freely available at https://github.com/zhaoqi106/circ-FHN .

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA