Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Mol Cell Cardiol ; 52(1): 136-47, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22108056

RESUMEN

Alterations in intracellular Ca(2+) homeostasis are an important trigger of pathological cardiac remodeling; however, mechanisms governing context-dependent changes in Ca(2+) influx are poorly understood. Store-operated Ca(2+) entry (SOCE) is a major mechanism regulating Ca(2+) trafficking in numerous cell types, yet its prevalence in adult heart and possible role in physiology and disease are each unknown. The Ca(2+)-binding protein, stromal interaction molecule 1 (STIM1), is a Ca(2+) sensor in the sarcoplasmic reticulum (SR), capable of triggering SOCE by interacting with plasma membrane Ca(2+) channels. We report that SOCE is abundant and robust in neonatal cardiomyocytes; however, SOCE is absent from adult cardiomyocytes. Levels of STIM1 transcript and protein correlate with the amplitude of SOCE, and manipulation of STIM1 protein levels (via shRNA) or activity (via expression of constitutively active or dominant-negative mutants) reveals a critical role for STIM1 in activating SOCE in cardiac myocytes. In neonatal hearts a recently identified STIM1 splice variant (STIM1L) is predominant but diminishes with maturation, only to reemerge with agonist- or afterload-induced cardiac stress. To test for pathophysiological relevance, we evaluated both in vitro and in vivo models of cardiac hypertrophy, finding that STIM1 expression is re-activated by pathological stress to trigger significant SOCE-dependent Ca(2+) influx. STIM1 amplifies agonist-induced hypertrophy via activation of the calcineurin-NFAT pathway. Importantly, inhibition of STIM1 suppresses agonist-triggered hypertrophy, pointing to a requirement for SOCE in this remodeling response. Stress-triggered STIM1 re-expression, and consequent SOCE activation, are critical elements in the upstream, Ca(2+)-dependent control of pathological cardiac hypertrophy.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Cardiomegalia/metabolismo , Glicoproteínas de Membrana/metabolismo , Animales , Calcineurina/metabolismo , Canales de Calcio , Cardiomegalia/genética , Masculino , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Factores de Transcripción NFATC/metabolismo , Molécula de Interacción Estromal 1
2.
Circ Res ; 105(1): 51-60, 2009 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-19478199

RESUMEN

The L-type Ca(2+) channel (LTCC) is the major mediator of Ca(2+) influx in cardiomyocytes, leading to both mechanical contraction and activation of signaling cascades. Among these Ca(2+)-activated cascades is calcineurin, a protein phosphatase that promotes hypertrophic growth of the heart. Coimmunoprecipitations from heart extracts and pulldowns using heterologously expressed proteins provided evidence for direct binding of calcineurin at both the N and C termini of alpha(1)1.2. At the C terminus, calcineurin bound specifically at amino acids 1943 to 1971, adjacent to a well-characterized protein kinase (PK)A/PKC/PKG phospho-acceptor site Ser1928. In vitro assays demonstrated that calcineurin can dephosphorylate alpha(1)1.2. Channel function was increased in voltage-clamp recordings of I(Ca,L) from cultured cardiomyocytes expressing constitutively active calcineurin, consistent with previous observations in cardiac hypertrophy in vivo. Conversely, acute suppression of calcineurin pharmacologically or with specific peptides decreased I(Ca,L). These data reveal direct physical interaction between the LTCC and calcineurin in heart. Furthermore, they demonstrate that calcineurin induces robust increases in I(Ca,L) and highlight calcineurin as a key modulator of pathological electrical remodeling in cardiac hypertrophy.


Asunto(s)
Calcineurina/metabolismo , Canales de Calcio Tipo L/metabolismo , Animales , Sitios de Unión , Cardiomegalia , Células Cultivadas , Técnicas Electrofisiológicas Cardíacas , Ventrículos Cardíacos/citología , Miocitos Cardíacos/citología , Fosforilación , Proteínas Quinasas/metabolismo , Ratas
3.
Biochemistry ; 49(48): 10298-307, 2010 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-21053940

RESUMEN

The L-type Ca(2+) channel Ca(v)1.2 forms macromolecular signaling complexes that comprise the ß(2) adrenergic receptor, trimeric G(s) protein, adenylyl cyclase, and cAMP-dependent protein kinase (PKA) for efficient signaling in heart and brain. The protein phosphatases PP2A and PP2B are part of this complex. PP2A counteracts increase in Ca(v)1.2 channel activity by PKA and other protein kinases, whereas PP2B can either augment or decrease Ca(v)1.2 currents in cardiomyocytes depending on the precise experimental conditions. We found that PP2A binds to two regions in the C-terminus of the central, pore-forming α(1) subunit of Ca(v)1.2: one region spans residues 1795-1818 and the other residues 1965-1971. PP2B binds immediately downstream of residue 1971. Injection of a peptide that contained residues 1965-1971 and displaced PP2A but not PP2B from endogenous Ca(v)1.2 increased basal and isoproterenol-stimulated L-type Ca(2+) currents in acutely isolated cardiomyocytes. Together with our biochemical data, these physiological results indicate that anchoring of PP2A at this site of Ca(v)1.2 in the heart negatively regulates cardiac L-type currents, likely by counterbalancing basal and stimulated phosphorylation that is mediated by PKA and possibly other kinases.


Asunto(s)
Calcineurina/metabolismo , Canales de Calcio Tipo L/química , Canales de Calcio Tipo L/metabolismo , Proteína Fosfatasa 2/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Unión Competitiva/efectos de los fármacos , Calcineurina/química , Conductividad Eléctrica , Ratones , Datos de Secuencia Molecular , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Fragmentos de Péptidos/administración & dosificación , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/farmacología , Perfusión , Unión Proteica , Proteína Fosfatasa 2/química , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Conejos , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo
5.
Trends Cardiovasc Med ; 24(1): 14-22, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23809405

RESUMEN

Calcineurin, a serine-threonine-specific, Ca(2+)-calmodulin-activated protein phosphatase, conserved from yeast to humans, plays a key role in regulating cardiac development, hypertrophy, and pathological remodeling. Recent studies demonstrate that calcineurin regulates cardiomyocyte ion channels and receptors in a manner which often entails direct interaction with these target proteins. Here, we review the current state of knowledge of calcineurin-mediated regulation of ion channels in the myocardium with emphasis on the transient outward potassium current (Ito) and L-type calcium current (ICa,L). We go on to discuss unanswered questions that surround these observations and provide perspective on future directions in this exciting field.


Asunto(s)
Calcineurina/metabolismo , Canales Iónicos/metabolismo , Miocardio/enzimología , Miocitos Cardíacos/enzimología , Animales , Canales de Calcio Tipo L/metabolismo , Cardiopatías/enzimología , Cardiopatías/fisiopatología , Humanos , Potenciales de la Membrana , Canales de Potasio/metabolismo , Transducción de Señal
9.
J Biol Chem ; 283(37): 25524-25532, 2008 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-18622016

RESUMEN

Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) activity is increased in heart failure (HF), a syndrome characterized by markedly increased risk of arrhythmia. Activation of CaMKII increases peak L-type Ca(2+) current (I(Ca)) and slows I(Ca) inactivation. Whether these events are linked mechanistically is unknown. I(Ca) was recorded in acutely dissociated subepicardial and subendocardial murine left ventricular (LV) myocytes using the whole cell patch clamp method. Pressure overload heart failure was induced by surgical constriction of the thoracic aorta. I(Ca) density was significantly larger in subepicardial myocytes than in subendocardial/myocytes. Similar patterns were observed in the cell surface expression of alpha1c, the channel pore-forming subunit. In failing LV, I(Ca) density was increased proportionately in both cell types, and the time course of I(Ca) inactivation was slowed. This typical pattern of changes suggested a role of CaMKII. Consistent with this, measurements of CaMKII activity revealed a 2-3-fold increase (p < 0.05) in failing LV. To test for a causal link, we measured frequency-dependent I(Ca) facilitation. In HF myocytes, this CaMKII-dependent process could not be induced, suggesting already maximal activation. Internal application of active CaMKII in failing myocytes did not elicit changes in I(Ca). Finally, CaMKII inhibition by internal diffusion of a specific peptide inhibitor reduced I(Ca) density and inactivation time course to similar levels in control and HF myocytes. I(Ca) density manifests a significant transmural gradient, and this gradient is preserved in heart failure. Activation of CaMKII, a known pro-arrhythmic molecule, is a major contributor to I(Ca) remodeling in load-induced heart failure.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calcio/metabolismo , Insuficiencia Cardíaca/metabolismo , Ventrículos Cardíacos/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Aorta/metabolismo , Masculino , Mastocitos/metabolismo , Potenciales de la Membrana , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Técnicas de Placa-Clamp , Presión
10.
J Cardiovasc Electrophysiol ; 17(3): 298-304, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16643405

RESUMEN

BACKGROUND: Transient outward current (I(to)) and L-type calcium current (I(Ca)) are important repolarization currents in cardiac myocytes. These two currents often undergo disease-related remodeling while other currents are spared, suggesting a functional coupling between them. Here, we investigated the effects of I(to) channel blockers, 4-aminopyridine (4-AP) and heteropodatoxin-2 (HpTx2), on I(Ca) in cardiac ventricular myocytes. METHODS AND RESULTS: I(Ca) was recorded in enzymatically dissociated mouse and guinea pig ventricular myocytes using the whole-cell voltage clamp method. In mouse ventricular myocytes, 4-AP (2 mM) significantly facilitated I(Ca) by increasing current amplitude and slowing inactivation. These effects were not voltage-dependent. Similar facilitating effects were seen when equimolar Ba2+ was substituted for external Ca2+, indicating that Ca2+ influx is not required. Measurements of Ca2+/calmodulin-dependent protein kinase (CaMKII) activity revealed significant increases in cells treated with 4-AP. Pretreatment of cells with 10 microM KN93, a specific inhibitor of CaMKII, abolished the effects of 4-AP on I(Ca.) To test the requirement of I(to), we studied guinea pig ventricular myocytes, which do not express I(to) channels. In these cells, 2 mM 4-AP had no effect on I(Ca) amplitude or kinetics. In both cell types, Ca2+-induced I(Ca) facilitation, a CaMKII-dependent process, was observed. However, 4-AP abolished Ca2+-induced I(Ca) facilitation exclusively in mouse ventricular myocytes. CONCLUSION: 4-AP, an I(to) blocker, facilitates L-type Ca2+ current through a mechanism involving the I(to) channel and CaMKII activation. These data indicate a functional association of I(Ca) and I(to) in cardiac myocytes.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Ventrículos Cardíacos/citología , Canales de Potasio Shal/antagonistas & inhibidores , 4-Aminopiridina/farmacología , Animales , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Células Cultivadas , Cobayas , Ventrículos Cardíacos/metabolismo , Activación del Canal Iónico/fisiología , Ratones , Neurotoxinas/farmacología , Técnicas de Placa-Clamp , Venenos de Araña/química
11.
Mamm Genome ; 16(8): 555-66, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16180137

RESUMEN

We have used the new high-throughput mutation-scanning technique temperature-gradient capillary electrophoresis (TGCE) for the identification of point mutations induced by N-ethyl-N-nitrosourea (ENU) in the mouse genome. TGCE detects the presence of heteroduplex molecules formed between a wild-type gene segment and the corresponding homologous segment containing an induced mutation or a naturally occurring single nucleotide polymorphism (SNP). Partially denatured heteroduplex molecules are resolved from homoduplexes by virtue of their differential mobilities during capillary electrophoresis conducted in a finely controlled temperature gradient. Simultaneous heteroduplex analysis of 96 amplicons ranging from 150 to 600 bp in size is achieved in approximately 45 min without the need for predetermining the melting profile of each fragment. Initially, we exploited known mouse mutations to develop TGCE protocols for analyzing unpurified PCR samples amplified from crude tail-DNA preparations. TGCE was then applied to the rapid identification of three new ENU-induced mutations recovered from regional mutagenesis screens of a segment of mouse Chromosome 7. Enzyme assays and quantitative reverse transcription-PCR (qRT-PCR) methods validated these new mutations. Our data demonstrate that rapid mutation scanning with TGCE, followed by sequence verification only of detected positives, is an efficient approach to the identification of point mutations in the mouse genome.


Asunto(s)
Cromosomas de los Mamíferos/genética , Análisis Mutacional de ADN , Etilnitrosourea/farmacología , Mutagénesis/efectos de los fármacos , Mutación Puntual/genética , Animales , Secuencia de Bases , Cromatografía Líquida de Alta Presión , Electroforesis Capilar , Análisis Heterodúplex , Isoenzimas/genética , L-Lactato Deshidrogenasa/genética , Ratones , Ratones Endogámicos BALB C , Oxigenasas/genética , Fenotipo , Proteína Amiloide A Sérica/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA