RESUMEN
BACKGROUND: Bacterial growth rate, commonly reported in terms of doubling time, is frequently determined by one of two techniques: either by measuring optical absorption of a growing culture or by taking samples at different times during their growth phase, diluting them, spreading them on agar plates, incubating them, and counting the colonies that form. Both techniques require measurements of multiple repeats, as well careful assessment of reproducibility and consistency. Existing literature using either technique gives a wide range of growth rate values for even the most extensively studied species of bacteria, such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. This work aims to apply several methods to reliably determine the growth rate of a recently identified species of Enterobacteriaceae, called Enterobacter sp. SM3, and to compare that rate with that of a well-known wildtype E. coli strain KP437. RESULTS: We extend conventional optical density (OD) measurements to determine the growth rate of Enterobacter sp. SM3. To assess the reliability of this technique, we compare growth rates obtained by fitting the OD data to exponential growth, applying a relative density method, and measuring shifts in OD curves following set factors of dilution. The main source of error in applying the OD technique is due to the reliance on an exponential growth phase with a short span. With proper choice of parameter range, however, we show that these three methods yield consistent results. We also measured the SM3 division rate by counting colony-forming units (CFU) versus time, yielding results consistent with the OD measurements. In lysogeny broth at 37oC, SM3 divides every 21 ± 3 min, notably faster than the RP437 strain of E. coli, which divides every 29 ± 2 min. CONCLUSION: The main conclusion of this report is that conventional optical density (OD) measurements and the colony-forming units (CFU) method can yield consistent values of bacterial growth rate. However, to ensure the reproducibility and reliability of the measured growth rate of each bacterial strain, different methods ought to be applied in close comparison. The effort of checking for consistency among multiple techniques, as we have done in this study, is necessary to avoid reporting variable values of doubling time for particular species or strains of bacteria, as seen in the literature.
Asunto(s)
Enterobacter , Enterobacter/crecimiento & desarrollo , Enterobacter/clasificación , Reproducibilidad de los Resultados , Técnicas Bacteriológicas/métodos , Escherichia coli/crecimiento & desarrollo , Recuento de Colonia Microbiana/métodosRESUMEN
BACKGROUND AND AIMS: Bacterial swarming, a collective movement on a surface, has rarely been associated with human pathophysiology. This study aims to define a role for bacterial swarmers in amelioration of intestinal stress. METHODS: We developed a polymicrobial plate agar assay to detect swarming and screened mice and humans with intestinal stress and inflammation. From chemically induced colitis in mice, as well as humans with inflammatory bowel disease, we developed techniques to isolate the dominant swarmers. We developed swarm-deficient but growth and swim-competent mutant bacteria as isogenic controls. We performed bacterial reinoculation studies in mice with colitis, fecal 16S, and meta-transcriptomic analyses, as well as in vitro microbial interaction studies. RESULTS: We show that bacterial swarmers are highly predictive of intestinal stress in mice and humans. We isolated a novel Enterobacter swarming strain, SM3, from mouse feces. SM3 and other known commensal swarmers, in contrast to their mutant strains, abrogated intestinal inflammation in mice. Treatment of colitic mice with SM3, but not its mutants, enriched beneficial fecal anaerobes belonging to the family of Bacteroidales S24-7. We observed SM3 swarming associated pathways in the in vivo fecal meta-transcriptomes. In vitro growth of S24-7 was enriched in presence of SM3 or its mutants; however, because SM3, but not mutants, induced S24-7 in vivo, we concluded that swarming plays an essential role in disseminating SM3 in vivo. CONCLUSIONS: Overall, our work identified a new but counterintuitive paradigm in which intestinal stress allows for the emergence of swarming bacteria; however, these bacteria act to heal intestinal inflammation.
Asunto(s)
Colitis/microbiología , Enterobacter/fisiología , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino/microbiología , Mucosa Intestinal/microbiología , Cicatrización de Heridas , Adulto , Anciano , Anciano de 80 o más Años , Animales , Técnicas Bacteriológicas , Colitis/patología , Colitis/prevención & control , Modelos Animales de Enfermedad , Disbiosis , Enterobacter/clasificación , Heces/microbiología , Femenino , Humanos , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Viabilidad Microbiana , Persona de Mediana Edad , Movimiento , Probióticos , Repitelización , Adulto JovenRESUMEN
Many species of bacteria have developed effective means to spread on solid surfaces. This study focuses on the expansion of Pseudomonas aeruginosa on an agar gel surface under conditions of minimal evaporation. We report the occurrence and spread of a depletion zone within an expanded colony, where the bacteria laden film becomes thinner. The depletion zone is colocalized with a higher concentration of rhamnolipids, the biosurfactants that are produced by the bacteria and accumulate in the older region of the colony. With continued growth in population, dense bacterial droplets occur and coalesce in the depletion zone, displaying remarkable fluid dynamic behavior. Whereas expansion of a central depletion zone requires activities of live bacteria, new zones can be seeded elsewhere by adding rhamnolipids. These depletion zones due to the added surfactants expand quickly, even on plates covered by bacteria that have been killed by ultraviolet light. We explain the observed properties based on considerations of bacterial growth and secretion, osmotic swelling, fluid volume expansion, interfacial fluid dynamics involving Marangoni and capillary flows, and cell-cell cohesion.
Asunto(s)
Bacterias , Pseudomonas aeruginosa , Agar , TensoactivosRESUMEN
Bacterial motility under confinement is relevant to both environmental control and the spread of infection. Here, we report observations on Escherichia coli, Enterobacter sp., Pseudomonas aeruginosa, and Bacillus subtilis when they are confined within a thin layer of water around dispersed micrometer-sized particles sprinkled over a semisolid agar gel. In this setting, E. coli and Enterobacteria orbit around the dispersed particles. The liquid layer is shaped like a shallow tent with its height at the center set by the seeding particle, and the meniscus profile set by the strong surface tension of water. The tent-shaped confinement and the left handedness of the flagellar filaments result in exclusively clockwise circular trajectories. The thin fluid layer is resilient because of a balance between evaporation and reinforcement of fluid that permeated out of the agar. The latter is driven by the Laplace pressure caused by the concave meniscus. In short, we explain the physical mechanism of a convenient method to entrap bacteria within localized thin fluid film near a permeable surface.
Asunto(s)
Bacterias/metabolismo , Flagelos/metabolismo , Tamaño de la Partícula , Hidrodinámica , Movimiento (Física) , AguaRESUMEN
Measurements and Langevin dynamics simulations of filamentous viruses driven through solid-state nanopores reveal a superlinear rise in the translocation velocity with driving force. The mobility also scales with the length of the virus in a nontrivial way that depends on the force. These dynamics are consequences of the buckling of the leading portion of a virus as it emerges from the nanopore and is put under compressive stress by the viscous forces it encounters. The leading tip of a buckled virus stalls and this reduces the total viscous drag force. We present a scaling theory that connects the solid mechanics to the nonlinear dynamics of polyelectrolytes translocating nanopores.
Asunto(s)
Modelos Biológicos , Nanoporos , Fenómenos Fisiológicos de los Virus , Virus/metabolismo , Simulación por Computador , Dinámicas no LinealesRESUMEN
A growing bacterial colony is a dense suspension of an increasing number of cells capable of individual as well as collective motion. After inoculating Pseudomonas aeruginosa over an annular area on an agar plate, we observe the growth and spread of the bacterial population, and model the process by considering the physical effects that account for the features observed. Over a course of 10-12 hours, the majority of bacteria migrate to and accumulate at the edges. We model the capillary flow induced by imbalanced evaporation flux as the cause for the accumulation, much like the well-known coffee stain phenomenon. Simultaneously, periodic buckles or protrusions occur at the inner edge. These buckles indicate that the crowding bacteria produce a jam, transforming the densely packed population at the inner edge to a solid state. The continued bacterial growth produces buckles. Subsequently, a ring of packed bacteria behind the inner edge detach from it and break into pieces, forming bacterial droplets. These droplets slowly coalesce while they continually grow and collectively surf on the agar surface in the region where the colony had previously spread over. Our study shows a clear example of how fluid dynamics and elasto-mechanics together govern the bacterial colony pattern evolution.
Asunto(s)
Fenómenos Mecánicos , Pseudomonas aeruginosa/crecimiento & desarrollo , Fenómenos Biomecánicos , Elasticidad , ViscosidadRESUMEN
Many species of bacteria can spread over a moist surface via a particular form of collective motion known as "surface swarming". This form of motility is typically studied by inoculating bacteria on a gel formed by 0.4-1.5% agar, which contains essential nutrients for their growth and proliferation. Using Pseudomonas aeruginosa and its pili-less mutant, ΔPilA, we investigate physical factors that either facilitate or restrict the swarming motility, measured by the rate of increase in area covered by a spreading bacterial colony, i.e., a swarm. The wild-type colony spreads over the agar surface in highly branched structures. The pili-less mutant fills up the area more fully as it spreads, but it also produces numerous and fragmented branches, or tendrils, at the swarm front. Whereas additional surfactants enhance swarming, increasing the agar percentage, adding extra salt or sugar or incorporating viscous agents in the agar matrix all decrease swarming, supporting the conclusion that swarming motility is restricted by the surface tension at the swarm front and swarm growth is limited by the rate of water supply from within the agar gel. The physical basis elaborated through this study provides a useful framework for understanding the swarming behavior of numerous species of bacteria.
Asunto(s)
Pseudomonas aeruginosa/fisiología , Agar/farmacología , Flagelos/efectos de los fármacos , Flagelos/metabolismo , Peso Molecular , Movimiento/efectos de los fármacos , Mutación/genética , Octoxinol/farmacología , Concentración Osmolar , Polímeros/química , Pseudomonas aeruginosa/efectos de los fármacos , Tensoactivos/farmacologíaRESUMEN
We resolve the 3D trajectory and the orientation of individual cells for extended times, using a digital tracking technique combined with 3D reconstructions. We have used this technique to study the motility of the uniflagellated bacterium Caulobacter crescentus and have found that each cell displays two distinct modes of motility, depending on the sense of rotation of the flagellar motor. In the forward mode, when the flagellum pushes the cell, the cell body is tilted with respect to the direction of motion, and it precesses, tracing out a helical trajectory. In the reverse mode, when the flagellum pulls the cell, the precession is smaller and the cell has a lower translation distance per rotation period and thus a lower motility. Using resistive force theory, we show how the helical motion of the cell body generates thrust and can explain the direction-dependent changes in swimming motility. The source of the cell body precession is believed to be associated with the flexibility of the hook that connects the flagellum to the cell body.
Asunto(s)
Caulobacter crescentus/citología , Fenómenos Biofísicos , Hidrodinámica , Microscopía , Modelos Biológicos , MovimientoRESUMEN
Many motile microorganisms are able to detect chemical gradients in their surroundings to bias their motion toward more favorable conditions. In this study, we observe the swimming patterns of Caulobacter crescentus, a uniflagellated bacterium, in a linear oxygen gradient produced by a three-channel microfluidic device. Using low-magnification dark-field microscopy, individual cells are tracked over a large field of view and their positions within the oxygen gradient are recorded over time. Motor switching events are identified so that swimming trajectories are deconstructed into a series of forward and backward swimming runs. Using these data, we show that C. crescentus displays aerotactic behavior by extending the average duration of forward swimming runs while moving up an oxygen gradient, resulting in directed motility toward oxygen sources. Additionally, the motor switching response is sensitive both to the steepness of the gradient experienced and to background oxygen levels, exhibiting a logarithmic response.
Asunto(s)
Caulobacter crescentus/citología , Quimiotaxis , Caulobacter crescentus/metabolismo , Cinética , Oxígeno/metabolismoRESUMEN
A Caulobacter crescentus swarmer cell is propelled by a helical flagellum, which is rotated by a motor at its base. The motor alternates between rotating in clockwise and counterclockwise directions and spends variable intervals of time in each state. We measure the distributions of these intervals for cells either free swimming or tethered to a glass slide. A peak time of around one second is observed in the distributions for both motor directions with counterclockwise intervals more sharply peaked and clockwise intervals displaying a larger tail at long times. We show that distributions of rotation intervals fit first passage time statistics for a biased random walker and the dynamic binding of CheY-P to FliM motor subunits accounts for this behavior. Our results also suggest that the presence of multiple CheY proteins in C. crescentus may be responsible for differences between its switching behavior and that of the extensively studied E. coli.
Asunto(s)
Caulobacter crescentus/fisiología , Flagelos/fisiología , Modelos Biológicos , Proteínas Bacterianas/fisiología , Proteínas de Escherichia coli , Proteínas de la Membrana/fisiología , Proteínas Quimiotácticas Aceptoras de Metilo , Modelos Estadísticos , Proteínas Motoras Moleculares/fisiologíaRESUMEN
Using Escherichia coli as a model organism, we studied how water is recruited by a bacterial swarm. A previous analysis of trajectories of small air bubbles revealed a stream of fluid flowing in a clockwise direction ahead of the swarm. A companion study suggested that water moves out of the agar into the swarm in a narrow region centered â¼ 30 µm from the leading edge of the swarm and then back into the agar (at a smaller rate) in a region centered â¼ 120 µm back from the leading edge. Presumably, these flows are driven by changes in osmolarity. Here, we utilized green/red fluorescent liposomes as reporters of osmolarity to verify this hypothesis. The stream of fluid that flows in front of the swarm contains osmolytes. Two distinct regions are observed inside the swarm near its leading edge: an outer high-osmolarity band (â¼ 30 mOsm higher than the agar baseline) and an inner low-osmolarity band (isotonic or slightly hypotonic to the agar baseline). This profile supports the fluid-flow model derived from the drift of air bubbles and provides new (to our knowledge) insights into water maintenance in bacterial swarms. High osmotic pressure at the leading edge of the swarm extracts water from the underlying agar and promotes motility. The osmolyte is of high molecular weight and probably is lipopolysaccharide.
Asunto(s)
Escherichia coli/fisiología , Presión Osmótica/fisiología , Agua/metabolismo , Agar/química , Calibración , Medios de Cultivo/química , Colorantes Fluorescentes , Liposomas/metabolismo , Microscopía Fluorescente , Modelos BiológicosRESUMEN
BACKGROUND: Motility of flagellated bacteria depends crucially on their organelles such as flagella and pili, as well as physical properties of the external medium, such as viscosity and matrix elasticity. We studied the motility of wild-type and two mutant strains of Caulobacter crescentus swarmer cells in two different types of media: a viscous and hyperosmotic glycerol-growth medium mixture and a viscoelastic growth medium, containing polyethylene glycol or polyethylene oxide of different defined sizes. RESULTS: For all three strains in the medium containing glycerol, we found linear drops in percentage of motile cells and decreases in speed of those that remained motile to be inversely proportional to viscosity. The majority of immobilized cells lost viability, evidenced by their membrane leakage. In the viscoelastic media, we found less loss of motility and attenuated decrease of swimming speed at shear viscosity values comparable to the viscous medium. In both types of media, we found more severe loss in percentage of motile cells of wild-type than the mutants without pili, indicating that the interference of pili with flagellated motility is aggravated by increased viscosity. However, we found no difference in swimming speed among all three strains under all test conditions for the cells that remained motile. Finally, the viscoelastic medium caused no significant change in intervals between flagellar motor switches unless the motor stalled. CONCLUSION: Hyperosmotic effect causes loss of motility and cell death. Addition of polymers into the cell medium also causes loss of motility due to increased shear viscosity, but the majority of immobilized bacteria remain viable. Both viscous and viscoelastic media alter the motility of flagellated bacteria without affecting the internal regulation of their motor switching behavior.
Asunto(s)
Caulobacter crescentus/fisiología , Medios de Cultivo/química , Elasticidad , Locomoción , Viscosidad , Viabilidad Microbiana , Presión OsmóticaRESUMEN
The recent discovery of the peritrichous, swarm-competent bacterium Enterobacter sp. SM3 has offered a new opportunity to investigate the connection between bacterial swimming and swarming. Here, we report the run-and-tumble behavior of SM3 as planktonic swimming cells and as swarming cells diluted in liquid medium, drawing comparison between the two states. Swimming cells of SM3 run for an average of 0.77 s with a speed of approximately 30µm/s before tumbling. Tumbles last for a duration of 0.12 s on average and cause changes in direction averaging 69^{∘}. Swimming cells exposed to the common chemoattractant serine in bulk solution suppress the frequency of tumbles in the steady state, lengthening the average run duration and decreasing the average tumble angle. When exposed to aspartate, cells do not demonstrate a notable change in run-and-tumble parameters in the steady state. For swarming cells of SM3, the frequency of tumbles is reduced, with the average run duration being 50% longer on average than that of swimming cells in the same liquid medium. Additionally, the average tumble angle of swarming cells is smaller by 35%. These findings reveal that the newly identified species, SM3, performs run-and-tumble motility similar to other species of peritrichous bacteria such as E. coli, both in the swimming and swarming states. We present a simple mechanical model, which provides a physical understanding of the run-and-tumble behavior of peritrichous bacteria.
Asunto(s)
Enterobacter , Modelos Biológicos , Enterobacter/fisiología , Fenómenos Biomecánicos , MovimientoRESUMEN
Understanding the specific movements of bacteria isolated from human feces can serve as a novel diagnostic and therapeutic tool for inflammatory bowel disease. Here, we present a protocol for a microbial swarming assay and to isolate the bacteria responsible for swarming activity. We describe steps for identifying bacteria using MALDI-TOF mass spectrometry and whole-genome sequencing. We then detail procedures for validating findings by observing the same swarming phenotype upon reperforming the swarming assay. For complete details on the use and execution of this protocol, please refer to De et al.1.
Asunto(s)
Bacterias , Heces , Humanos , Heces/microbiología , Bacterias/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Secuenciación Completa del Genoma/métodosRESUMEN
Microbes inhabiting Earth have adapted to diverse environments of water, air, soil, and often at the interfaces of multiple media. In this study, we focus on the behavior of Caulobacter crescentus, a singly flagellated bacterium, at the air/water interface. Forward swimming C. crescentus swarmer cells tend to get physically trapped at the surface when swimming in nutrient-rich growth medium but not in minimal salt motility medium. Trapped cells move in tight, clockwise circles when viewed from the air with slightly reduced speed. Trace amounts of Triton X100, a nonionic surfactant, release the trapped cells from these circular trajectories. We show, by tracing the motion of positively charged colloidal beads near the interface that organic molecules in the growth medium adsorb at the interface, creating a high viscosity film. Consequently, the air/water interface no longer acts as a free surface and forward swimming cells become hydrodynamically trapped. Added surfactants efficiently partition to the surface, replacing the viscous layer of molecules and reestablishing free surface behavior. These findings help explain recent similar studies on Escherichia coli, showing trajectories of variable handedness depending on media chemistry. The consistent behavior of these two distinct microbial species provides insights on how microbes have evolved to cope with challenging interfacial environments.
Asunto(s)
Aire , Caulobacter crescentus/citología , Movimiento , Agua , Adsorción , Microscopía , Propiedades de SuperficieRESUMEN
The attachment of bacteria to surfaces provides advantages such as increasing nutrient access and resistance to environmental stress. Attachment begins with a reversible phase, often mediated by surface structures such as flagella and pili, followed by a transition to irreversible attachment, typically mediated by polysaccharides. Here we show that the interplay between pili and flagellum rotation stimulates the rapid transition between reversible and polysaccharide-mediated irreversible attachment. We found that reversible attachment of Caulobacter crescentus cells is mediated by motile cells bearing pili and that their contact with a surface results in the rapid pili-dependent arrest of flagellum rotation and concurrent stimulation of polar holdfast adhesive polysaccharide. Similar stimulation of polar adhesin production by surface contact occurs in Asticcacaulis biprosthecum and Agrobacterium tumefaciens. Therefore, single bacterial cells respond to their initial contact with surfaces by triggering just-in-time adhesin production. This mechanism restricts stable attachment to intimate surface interactions, thereby maximizing surface attachment, discouraging non-productive self-adherence, and preventing curing of the adhesive.
Asunto(s)
Adhesinas Bacterianas/metabolismo , Caulobacter crescentus/fisiología , Adhesinas Bacterianas/genética , Adhesión Bacteriana , Caulobacter crescentus/genética , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Flagelos/genética , Flagelos/metabolismo , Regulación Bacteriana de la Expresión GénicaRESUMEN
BACKGROUND: Adhesion to surfaces facilitates many crucial functions of microbes in their natural habitats. Thus understanding the mechanism of microbial adhesion is of broad interest to the microbiology research community. RESULTS: We report a study by fluorescence imaging and atomic force microscopy on the growth in size and thickness of the holdfast of synchronized Caulobacter crescentus cells as they attach to a glass surface. We found that the holdfast undergoes a two-stage process of spreading and thickening during its morphogenesis. The holdfast first forms a thin plate on the surface. The diameter of the holdfast plate reaches its final average value of 360 nm by the cell age of ~ 30 min, while its thickness further increases until the age of ~ 60 min. Our AFM analysis indicates that the holdfast is typically thicker in the middle, with gradual falloff in thickness towards the outer edge. CONCLUSIONS: We propose that the newly secreted holdfast substance is fluid-like. It has strong affinity to the surface and cures to form a plate-like holdfast capable of supporting strong and permanent adhesion.
Asunto(s)
Adhesión Bacteriana , Caulobacter crescentus/fisiología , Caulobacter crescentus/crecimiento & desarrollo , Procesamiento de Imagen Asistido por Computador , Microscopía de Fuerza Atómica , Microscopía FluorescenteRESUMEN
Many species of bacteria change their morphology and behavior under external stresses. In this study, we report transient elongation and swimming motility of a novel Enterobacter sp. strain, SM1_HS2B, in liquid broth under a standard growth condition. When growing in the Luria-Bertani medium, HS2B cells delay their cell division and elongate. Although transient over a few hours, the average cell length reaches over 10 times that of the stationary-state cells. The increase is also cumulative following repeated growth cycles stimulated by taking cells out of the exponential phase and adding them into fresh medium every 2 hours. The majority of the cells attain swimming motility during the exponential growth phase, and then they lose swimming motility over the course of several hours. Both daughter cells due to division of a long swimming cell retain the ability to swim. We confirm that the long HS2B cells swim with rigid-body rotation along their body axis. These findings based on microscopic observation following repeated cycles of growth establish HS2B as a prototype strain with sensitive dependence of size and motility on its physical and biochemical environment. IMPORTANCE Bacteria undergo morphological changes in order to cope with external stresses. Among the best-known examples are cell elongation and hyperflagellation in the context of swarming motility. The subject of this report, SM1_HS2B, is a hyperswarming strain of a newly identified species of enterobacteria, noted as Enterobacter sp. SM1. The key finding that SM1_HS2B transiently elongates to extreme length in fresh liquid medium offers new insights on regulation in bacterial growth and division. SM1_HS2B also manifests transient but vigorous swimming motility during the exponential phase of growth in liquid medium. These properties establish HS2B as a prototype strain with sensitive dependence of size and motility on its physical and biochemical environment. Such a dependence may be relevant to swarming behavior with a significant environmental or physiological outcome.
Asunto(s)
Enterobacter , Flagelos , Proteínas Bacterianas/genética , División Celular , Enterobacter/genética , Enterobacter/metabolismo , Flagelos/metabolismoRESUMEN
Bacterial flagella play key roles in surface attachment and host-bacterial interactions as well as driving motility. Here, we have investigated the ability of Caulobacter crescentus to assemble its flagellar filament from six flagellins: FljJ, FljK, FljL, FljM, FljN, and FljO. Flagellin gene deletion combinations exhibited a range of phenotypes from no motility or impaired motility to full motility. Characterization of the mutant collection showed the following: (i) that there is no strict requirement for any one of the six flagellins to assemble a filament; (ii) that there is a correlation between slower swimming speeds and shorter filament lengths in ΔfljK ΔfljM mutants; (iii) that the flagellins FljM to FljO are less stable than FljJ to FljL; and (iv) that the flagellins FljK, FljL, FljM, FljN, and FljO alone are able to assemble a filament.
Asunto(s)
Caulobacter crescentus/fisiología , Flagelos/metabolismo , Flagelina/genética , Flagelina/metabolismo , Sustancias Macromoleculares/metabolismo , Caulobacter crescentus/genética , Flagelos/ultraestructura , Eliminación de Gen , Genes Bacterianos , Locomoción , Sustancias Macromoleculares/ultraestructura , Microscopía ElectrónicaRESUMEN
To reach sites of inflammation, neutrophils execute a series of adhesion and migration events that include transmigration through the vascular endothelium and chemotaxis through the vicinal extracellular matrix until contact is made with the point of injury or infection. These in vivo microenvironments differ in their mechanical properties. Using polyacrylamide gels of physiologically relevant elasticity in the range of 5 to 100 kPa and coated with fibronectin, we tested how neutrophil adhesion, spreading, and migration were affected by substrate stiffness. Neutrophils on the softest gels showed only small changes in spread area, whereas on the stiffest gels they showed a 3-fold increase. During adhesion and migration, the magnitudes of the distortions induced in the gel substrate were independent of substrate stiffness, corresponding to the generation of significantly larger traction stresses on the stiffer gels. Cells migrated more slowly but more persistently on stiffer substrates, which resulted in neutrophils moving greater distances over time despite their slower speeds. The largest tractions were localized to the posterior of migrating neutrophils and were independent of substrate stiffness. Finally, the phosphatidylinositol 3-kinase inhibitor LY294002 obviated the ability to sense substrate stiffness, suggesting that phosphatidylinositol 3-kinase plays a mechanistic role in neutrophil mechanosensing.