Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biophys J ; 117(7): 1224-1233, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31519299

RESUMEN

Phospholipids are ubiquitous components of biomembranes and common biomaterials used in many bioengineering applications. Understanding adsorption of phospholipids at the air-water surface plays an important role in the study of pulmonary surfactants and cell membranes. To date, however, the biophysical mechanisms of phospholipid adsorption are still unknown. It is challenging to reveal the molecular structure of adsorbed phospholipid films. Using combined experiments with constrained drop surfactometry and molecular dynamics simulations, here, we studied the biophysical mechanisms of dipalmitoylphosphatidylcholine (DPPC) adsorption at the air-water surface. It was found that the DPPC film adsorbed from vesicles showed distinct equilibrium surface tensions from the DPPC monolayer spread via organic solvents. Our simulations revealed that only the outer leaflet of the DPPC vesicle is capable of unzipping and spreading at the air-water surface, whereas the inner leaflet remains intact and forms an inverted micelle to the interfacial monolayer. This inverted micelle increases the local curvature of the monolayer, thus leading to a loosely packed monolayer at the air-water surface and hence a higher equilibrium surface tension. These findings provide novel insights, to our knowledge, into the mechanism of the phospholipid and pulmonary surfactant adsorption and may help understand the structure-function correlation in biomembranes.


Asunto(s)
Aire , Fosfolípidos/química , Agua/química , Adsorción , Conformación Molecular , Simulación de Dinámica Molecular , Propiedades de Superficie
2.
J Biol Chem ; 293(5): 1504-1514, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29237732

RESUMEN

The bacterial type VI secretion system (T6SS) mediates antagonistic cell-cell interactions between competing Gram-negative bacteria. In plant-beneficial bacteria, this pathway has been shown to suppress the growth of bacterial pathogens; however, the identification and mode of action of T6SS effector proteins that mediate this protective effect remain poorly defined. Here, we identify two previously uncharacterized effectors required for interbacterial antagonism by the plant commensal bacterium Pseudomonas protegens Consistent with the established effector-immunity paradigm for antibacterial T6SS substrates, the toxic activities of these effectors are neutralized by adjacently encoded cognate immunity determinants. Although one of these effectors, RhsA, belongs to the family of DNase enzymes, the activity of the other was not apparent from its sequence. To determine the mechanism of toxicity of this latter effector, we determined its 1.3 Å crystal structure in complex with its immunity protein and found that it resembles NAD(P)+-degrading enzymes. In line with this structural similarity, biochemical characterization of this effector, termed Tne2 (Type VI secretion NADase effector family 2), demonstrates that it possesses potent NAD(P)+ hydrolase activity. Tne2 is the founding member of a widespread family of interbacterial NADases predicted to transit not only the Gram-negative T6SS but also the Gram-positive type VII secretion system, a pathway recently implicated in interbacterial competition among Firmicutes. Together, this work identifies new T6SS effectors employed by a plant commensal bacterium to antagonize its competitors and broadly implicates NAD(P)+-hydrolyzing enzymes as substrates of interbacterial conflict pathways found in diverse bacterial phyla.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacterias Grampositivas/metabolismo , NAD+ Nucleosidasa/metabolismo , Sistemas de Secreción Tipo VI/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA