Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Mol Cell ; 83(15): 2810-2828.e6, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37541219

RESUMEN

DNA damage-activated signaling pathways are critical for coordinating multiple cellular processes, which must be tightly regulated to maintain genome stability. To provide a comprehensive and unbiased perspective of DNA damage response (DDR) signaling pathways, we performed 30 fluorescence-activated cell sorting (FACS)-based genome-wide CRISPR screens in human cell lines with antibodies recognizing distinct endogenous DNA damage signaling proteins to identify critical regulators involved in DDR. We discovered that proteasome-mediated processing is an early and prerequisite event for cells to trigger camptothecin- and etoposide-induced DDR signaling. Furthermore, we identified PRMT1 and PRMT5 as modulators that regulate ATM protein level. Moreover, we discovered that GNB1L is a key regulator of DDR signaling via its role as a co-chaperone specifically regulating PIKK proteins. Collectively, these screens offer a rich resource for further investigation of DDR, which may provide insight into strategies of targeting these DDR pathways to improve therapeutic outcomes.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Daño del ADN , Humanos , Citometría de Flujo , Transducción de Señal , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Genoma , Proteína-Arginina N-Metiltransferasas/genética , Proteínas Represoras/genética
2.
EMBO J ; 40(17): e107776, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34232536

RESUMEN

Host-virus protein-protein interactions play key roles in the life cycle of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We conducted a comprehensive interactome study between the virus and host cells using tandem affinity purification and proximity-labeling strategies and identified 437 human proteins as the high-confidence interacting proteins. Further characterization of these interactions and comparison to other large-scale study of cellular responses to SARS-CoV-2 infection elucidated how distinct SARS-CoV-2 viral proteins participate in its life cycle. With these data mining, we discovered potential drug targets for the treatment of COVID-19. The interactomes of two key SARS-CoV-2-encoded viral proteins, NSP1 and N, were compared with the interactomes of their counterparts in other human coronaviruses. These comparisons not only revealed common host pathways these viruses manipulate for their survival, but also showed divergent protein-protein interactions that may explain differences in disease pathology. This comprehensive interactome of SARS-CoV-2 provides valuable resources for the understanding and treating of this disease.


Asunto(s)
COVID-19/genética , Proteínas de la Nucleocápside de Coronavirus/genética , SARS-CoV-2/genética , Proteínas no Estructurales Virales/genética , COVID-19/patología , COVID-19/virología , Interacciones Huésped-Patógeno/genética , Humanos , Mapas de Interacción de Proteínas/genética , SARS-CoV-2/patogenicidad , Replicación Viral/genética
3.
Proc Natl Acad Sci U S A ; 119(25): e2121779119, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35704761

RESUMEN

Cell surface proteins play essential roles in various biological processes and are highly related to cancer development. They also serve as important markers for cell identity and targets for pharmacological intervention. Despite their great potentials in biomedical research, comprehensive functional analysis of cell surface proteins remains scarce. Here, with a de novo designed library targeting cell surface proteins, we performed in vivo CRISPR screens to evaluate the effects of cell surface proteins on tumor survival and proliferation. We found that Kirrel1 loss markedly promoted tumor growth in vivo. Moreover, KIRREL was significantly enriched in a separate CRISPR screen based on a specific Hippo pathway reporter. Further studies revealed that KIRREL binds directly to SAV1 to activate the Hippo tumor suppressor pathway. Together, our integrated screens reveal a cell surface tumor suppressor involved in the Hippo pathway and highlight the potential of these approaches in biomedical research.


Asunto(s)
Genes Supresores de Tumor , Vía de Señalización Hippo , Proteínas de la Membrana , Neoplasias , Animales , Proliferación Celular/genética , Vía de Señalización Hippo/genética , Proteínas de la Membrana/metabolismo , Ratones , Neoplasias/genética , Neoplasias/metabolismo , Transducción de Señal
4.
EMBO J ; 39(14): e104036, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32484965

RESUMEN

Mechanistic understanding of how ionizing radiation induces type I interferon signaling and how to amplify this signaling module should help to maximize the efficacy of radiotherapy. In the current study, we report that inhibitors of the DNA damage response kinase ATR can significantly potentiate ionizing radiation-induced innate immune responses. Using a series of mammalian knockout cell lines, we demonstrate that, surprisingly, both the cGAS/STING-dependent DNA-sensing pathway and the MAVS-dependent RNA-sensing pathway are responsible for type I interferon signaling induced by ionizing radiation in the presence or absence of ATR inhibitors. The relative contributions of these two pathways in type I interferon signaling depend on cell type and/or genetic background. We propose that DNA damage-elicited double-strand DNA breaks releases DNA fragments, which may either activate the cGAS/STING-dependent pathway or-especially in the case of AT-rich DNA sequences-be transcribed and initiate MAVS-dependent RNA sensing and signaling. Together, our results suggest the involvement of two distinct pathways in type I interferon signaling upon DNA damage. Moreover, radiation plus ATR inhibition may be a promising new combination therapy against cancer.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/inmunología , Roturas del ADN de Doble Cadena/efectos de la radiación , Interferón Tipo I/inmunología , Radiación Ionizante , Transducción de Señal/efectos de la radiación , Proteínas de la Ataxia Telangiectasia Mutada/genética , Línea Celular Tumoral , Humanos , Interferón Tipo I/genética , Transducción de Señal/genética , Transducción de Señal/inmunología
5.
Chemphyschem ; : e202400629, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982718

RESUMEN

Electrode materials are essential in the electrochemical process of storing charge in supercapacitors and have a significant impact on the cost and capacitive performance of the final product. Hence, it is imperative to make precise predictions regarding the capacitance of electrode materials in order to further the development of supercapacitors. MgCo2O4, with a theoretical capacitance of up to 3122 F g-1, holds immense research value as an electrode material. The objective of this study is to predict the capacitance of MgCo2O4 with high accuracy. This will be achieved by extracting numerous data from published papers and using some parameters as input features. The Recursive Feature Elimination (RFE) method was employed, using Random Forest (RF), Extreme Gradient Boosting (XGBoost) and Regression Tree (RT) as selectors to identify the optimal feature subset. Then, combining them with these three regression models to construct nine machine learning (ML) models. After performance evaluation and outlier analysis, the XGB-RFE-XGB model achieved R-squared (R²), root mean squared error (RMSE), and mean absolute error (MAE) of 0.95, 111.83 F g-1 and 68.25 F g-1, respectively, demonstrating its stability and reliability. Therefore, the XGB-RFE-XGB model can be used as a reliable predictive tool in subsequent experimental designs.

6.
J Biol Chem ; 298(6): 101979, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35472331

RESUMEN

Replication timing regulatory factor 1 (RIF1) acts downstream of p53-binding protein 53BP1 to inhibit the resection of DNA broken ends, which plays critical roles in determining the DNA double-strand break repair pathway choice between nonhomologous end joining and homologous recombination (HR). However, the mechanism by which this choice is made is not yet clear. In this study, we identified that histone chaperone protein ASF1 associates with RIF1 and regulates RIF1-dependent functions in the DNA damage response. Similar to loss of RIF1, we found that loss of ASF1 resulted in resistance to poly (ADP-ribose) polymerase (PARP) inhibition in BRCA1-deficient cells with restored HR and decreased telomere fusion in telomeric repeat-binding protein 2 (TRF2)-depleted cells. Moreover, we showed that these functions of ASF1 are dependent on its interaction with RIF1 but not on its histone chaperone activity. Thus, our study supports a new role for ASF1 in dictating double-strand break repair choice. Considering that the status of 53BP1-RIF1 axis is important in determining the outcome of PARP inhibitor-based therapy in BRCA1- or HR-deficient cancers, the identification of ASF1 function in this critical pathway uncovers an interesting connection between these S-phase events, which may reveal new strategies to overcome PARP inhibitor resistance.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Línea Celular , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Reparación del ADN , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Proteínas de Unión a Telómeros/genética , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
7.
Nucleic Acids Res ; 49(13): 7476-7491, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34197614

RESUMEN

Poly (ADP-ribose) polymerase inhibitor (PARPi)-based therapies initially reduce tumor burden but eventually lead to acquired resistance in cancer patients with BRCA1 or BRCA2 mutation. To understand the potential PARPi resistance mechanisms, we performed whole-genome CRISPR screens to discover genetic alterations that change the gene essentiality in cells with inducible depletion of BRCA2. We identified that several RNA Polymerase II transcription Mediator complex components, especially Cyclin C (CCNC) as synthetic survival targets upon BRCA2 loss. Total mRNA sequencing demonstrated that loss of CCNC could activate the transforming growth factor (TGF)-beta signaling pathway and extracellular matrix (ECM)-receptor interaction pathway, however the inhibition of these pathways could not reverse cell survival in BRCA2 depleted CCNC-knockout cells, indicating that the activation of these pathways is not required for the resistance. Moreover, we showed that the improved survival is not due to restoration of homologous recombination repair although decreased DNA damage signaling was observed. Interestingly, loss of CCNC could restore replication fork stability in BRCA2 deficient cells, which may contribute to PARPi resistance. Taken together, our data reveal CCNC as a critical genetic determinant upon BRCA2 loss of function, which may help the development of novel therapeutic strategies that overcome PARPi resistance.


Asunto(s)
Proteína BRCA2/genética , Ciclina C/genética , Proteína BRCA2/metabolismo , Sistemas CRISPR-Cas , Supervivencia Celular , Daño del ADN , Replicación del ADN , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Complejo Mediador/genética , Complejo Mediador/fisiología , Reparación del ADN por Recombinación , Estrés Fisiológico/genética
8.
Nucleic Acids Res ; 49(14): 8214-8231, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34320214

RESUMEN

Because of essential roles of DNA damage response (DDR) in the maintenance of genomic integrity, cellular homeostasis, and tumor suppression, targeting DDR has become a promising therapeutic strategy for cancer treatment. However, the benefits of cancer therapy targeting DDR are limited mainly due to the lack of predictive biomarkers. To address this challenge, we performed CRISPR screens to search for genetic vulnerabilities that affect cells' response to DDR inhibition. By undertaking CRISPR screens with inhibitors targeting key DDR mediators, i.e. ATR, ATM, DNAPK and CHK1, we obtained a global and unbiased view of genetic interactions with DDR inhibition. Specifically, we identified YWHAE loss as a key determinant of sensitivity to CHK1 inhibition. We showed that KLHL15 loss protects cells from DNA damage induced by ATM inhibition. Moreover, we validated that APEX1 loss sensitizes cells to DNAPK inhibition. Additionally, we compared the synergistic effects of combining different DDR inhibitors and found that an ATM inhibitor plus a PARP inhibitor induced dramatic levels of cell death, probably through promoting apoptosis. Our results enhance the understanding of DDR pathways and will facilitate the use of DDR-targeting agents in cancer therapy.


Asunto(s)
Proteínas 14-3-3/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Daño del ADN/genética , Proteína Quinasa Activada por ADN/genética , Apoptosis/efectos de los fármacos , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Sistemas CRISPR-Cas/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/antagonistas & inhibidores , Inestabilidad Genómica/genética , Humanos , Proteínas de Microfilamentos/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología
9.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38003514

RESUMEN

The Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system, an RNA-based adaptive immune system found in bacteria and archaea, has catalyzed the development and application of a new generation of gene editing tools. Numerous studies have shown that this system can precisely target a wide range of human genes, including those associated with diseases such as cancer. In cancer research, the intricate genetic mutations in tumors have promoted extensive utilization of the CRISPR/Cas9 system due to its efficient and accurate gene editing capabilities. This includes improvements in Chimeric Antigen Receptor (CAR)-T-cell therapy, the establishment of tumor models, and gene and drug target screening. Such progress has propelled the investigation of cancer molecular mechanisms and the advancement of precision medicine. However, the therapeutic potential of genome editing remains underexplored, and lingering challenges could elevate the risk of additional genetic mutations. Here, we elucidate the fundamental principles of CRISPR/Cas9 gene editing and its practical applications in tumor research. We also briefly discuss the primary challenges faced by CRISPR technology and existing solutions, intending to enhance the efficacy of this gene editing therapy and shed light on the underlying mechanisms of tumors.


Asunto(s)
Edición Génica , Neoplasias , Humanos , Sistemas CRISPR-Cas/genética , Proteína 9 Asociada a CRISPR/genética , ARN , Neoplasias/genética , Neoplasias/terapia
10.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37047518

RESUMEN

Etoposide (ETO) is an anticancer drug that targets topoisomerase II (TOP2). It stabilizes a normally transient TOP2-DNA covalent complex (TOP2cc), thus leading to DNA double-strand breaks (DSBs). Tyrosyl-DNA phosphodiesterases two (TDP2) is directly involved in the repair of TOP2cc by removing phosphotyrosyl peptides from 5'-termini of DSBs. Recent studies suggest that additional factors are required for TOP2cc repair, which include the proteasome and the zinc finger protein associated with TDP2 and TOP2, named ZATT. ZATT may alter the conformation of TOP2cc in a way that renders the accessibility of TDP2 for TOP2cc removal. In this study, our genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) screens revealed that ZATT also has a TDP2-independent role in promoting cell survival following ETO treatment. ZATT KO cells showed relatively higher ETO sensitivity than TDP2-KO cells, and ZATT/TDP2 DKO cells displayed additive hypersensitivity to ETO treatment. The study using a series of deletion mutants of ZATT determined that the N-terminal 1-168 residues of ZATT are required for interaction with TOP2 and this interaction is critical to ETO sensitivity. Moreover, depletion of ZATT resulted in accelerated TOP2 degradation after ETO or cycloheximide (CHX) treatment, suggesting that ZATT may increase TOP2 stability and likely participate in TOP2 turnover. Taken together, this study suggests that ZATT is a critical determinant that dictates responses to ETO treatment and targeting. ZATT is a promising strategy to increase ETO efficacy for cancer therapy.


Asunto(s)
Proteínas de Unión al ADN , Venenos , Etopósido/farmacología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , ADN/metabolismo
11.
EMBO Rep ; 21(6): e49123, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32307824

RESUMEN

Replication across oxidative DNA lesions can give rise to mutations that pose a threat to genome integrity. How such lesions, which escape base excision repair, get removed without error during replication remains unknown. Our PCNA-based screen to uncover changes in replisome composition under different replication stress conditions had revealed a previously unknown PCNA-interacting protein, HMCES/C3orf37. Here, we show that HMCES is a critical component of the replication stress response, mainly upon base misincorporation. We further demonstrate that the absence of HMCES imparts resistance to pemetrexed treatment due to error-prone bypass of oxidative damage. Furthermore, based on genetic screening, we show that homologous recombination repair proteins, such as CtIP, BRCA2, BRCA1, and PALB2, are indispensable for the survival of HMCES KO cells. Hence, HMCES, which is the sole member of the SRAP superfamily in higher eukaryotes known so far, acts as a proofreader on replication forks, facilitates resolution of oxidative base damage, and therefore ensures faithful DNA replication.


Asunto(s)
Reparación del ADN , Replicación del ADN , Daño del ADN , Reparación del ADN/genética , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Humanos , Estrés Oxidativo/genética
12.
Mol Cell Proteomics ; 19(12): 2015-2030, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32958691

RESUMEN

Specific E3 ligases target tumor suppressors for degradation. Inhibition of such E3 ligases may be an important approach to cancer treatment. RNF146 is a RING domain and PARylation-dependent E3 ligase that functions as an activator of the ß-catenin/Wnt and YAP/Hippo pathways by targeting the degradation of several tumor suppressors. Tankyrases 1 and 2 (TNKS1/2) are the only known poly-ADP-ribosyltransferases that require RNF146 to degrade their substrates. However, systematic identification of RNF146 substrates have not yet been performed. To uncover substrates of RNF146 that are targeted for degradation, we generated RNF146 knockout cells and TNKS1/2-double knockout cells and performed proteome profiling with label-free quantification as well as transcriptome analysis. We identified 160 potential substrates of RNF146, which included many known substrates of RNF146 and TNKS1/2 and 122 potential TNKS-independent substrates of RNF146. In addition, we validated OTU domain-containing protein 5 and Protein mono-ADP-ribosyltransferase PARP10 as TNKS1/2-independent substrates of RNF146 and SARDH as a novel substrate of TNKS1/2 and RNF146. Our study is the first proteome-wide analysis of potential RNF146 substrates. Together, these findings not only demonstrate that proteome profiling can be a useful general approach for the systemic identification of substrates of E3 ligases but also reveal new substrates of RNF146, which provides a resource for further functional studies.


Asunto(s)
Proteolisis , Proteoma/metabolismo , Proteómica , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Fetales/metabolismo , Compuestos Heterocíclicos con 3 Anillos/farmacología , Humanos , Modelos Biológicos , Proteínas Tirosina Quinasas/metabolismo , Proteolisis/efectos de los fármacos , Reproducibilidad de los Resultados , Especificidad por Sustrato/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
13.
Mol Cell Proteomics ; 19(3): 467-477, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31900314

RESUMEN

Adenosine monophosphate-activated protein kinase (AMPK) is an obligate heterotrimer that consists of a catalytic subunit (α) and two regulatory subunits (ß and γ). AMPK is a key enzyme in the regulation of cellular energy homeostasis. It has been well studied and is known to function in many cellular pathways. However, the interactome of AMPK has not yet been systematically established, although protein-protein interaction is critically important for protein function and regulation. Here, we used tandem-affinity purification, coupled with mass spectrometry (TAP-MS) analysis, to determine the interactome of AMPK and its functions. We conducted a TAP-MS analysis of all seven AMPK subunits. We identified 138 candidate high-confidence interacting proteins (HCIPs) of AMPK, which allowed us to build an interaction network of AMPK complexes. Five candidate AMPK-binding proteins were experimentally validated, underlining the reliability of our data set. Furthermore, we demonstrated that AMPK acts with a strong AMPK-binding protein, Artemis, in non-homologous end joining. Collectively, our study established the first AMPK interactome and uncovered a new function of AMPK in DNA repair.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Subunidades de Proteína/metabolismo , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Células HEK293 , Humanos , Mapeo de Interacción de Proteínas
14.
Nucleic Acids Res ; 47(19): 10181-10201, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31495888

RESUMEN

Interstrand crosslinks (ICLs) are highly toxic DNA lesions that are repaired via a complex process requiring the coordination of several DNA repair pathways. Defects in ICL repair result in Fanconi anemia, which is characterized by bone marrow failure, developmental abnormalities, and a high incidence of malignancies. SLX4, also known as FANCP, acts as a scaffold protein and coordinates multiple endonucleases that unhook ICLs, resolve homologous recombination intermediates, and perhaps remove unhooked ICLs. In this study, we explored the role of SLX4IP, a constitutive factor in the SLX4 complex, in ICL repair. We found that SLX4IP is a novel regulatory factor; its depletion sensitized cells to treatment with ICL-inducing agents and led to accumulation of cells in the G2/M phase. We further discovered that SLX4IP binds to SLX4 and XPF-ERCC1 simultaneously and that disruption of one interaction also disrupts the other. The binding of SLX4IP to both SLX4 and XPF-ERCC1 not only is vital for maintaining the stability of SLX4IP protein, but also promotes the interaction between SLX4 and XPF-ERCC1, especially after DNA damage. Collectively, these results demonstrate a new regulatory role for SLX4IP in maintaining an efficient SLX4-XPF-ERCC1 complex in ICL repair.


Asunto(s)
Proteínas Portadoras/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Recombinación Homóloga/genética , Recombinasas/genética , ADN/química , ADN/genética , Proteínas de Unión al ADN/química , Células HEK293 , Humanos , Unión Proteica/genética
15.
J Biol Chem ; 294(16): 6645-6656, 2019 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-30819801

RESUMEN

Linear chromosome ends are capped by telomeres that have been previously reported to adopt a t-loop structure. The lack of simple methods for detecting t-loops has hindered progress in understanding the dynamics of t-loop formation and its function in protecting chromosome ends. Here, we employed a classical two-dimensional agarose gel method (2D gel method) to innovatively apply to t-loop detection. Briefly, restriction fragments of genomic DNA were separated in a 2D gel, and the telomere sequence was detected by in-gel hybridization with telomeric probe. Using this method, we found that t-loops are present throughout the cell cycle, and t-loop formation tightly couples to telomere replication. We also observed that t-loop abundance positively correlates with chromatin condensation, i.e. cells with less compact telomeric chromatin (ALT cells and trichostatin A (TSA)-treated HeLa cells) exhibited fewer t-loops. Moreover, we observed that telomere dysfunction-induced foci, ALT-associated promyelocytic leukemia bodies, and telomere sister chromatid exchanges are activated upon TSA-induced loss of t-loops. These findings confirm the importance of the t-loop in protecting linear chromosomes from damage or illegitimate recombination.


Asunto(s)
Ciclo Celular/fisiología , Cromátides/metabolismo , Heterocromatina/metabolismo , Telómero/metabolismo , Cromátides/química , Electroforesis en Gel Bidimensional , Células HeLa , Heterocromatina/química , Humanos , Ácidos Hidroxámicos/farmacología , Telómero/química
16.
EMBO Rep ; 18(8): 1412-1428, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28615293

RESUMEN

Repetitive DNA is prone to replication fork stalling, which can lead to genome instability. Here, we find that replication fork stalling at telomeres leads to the formation of t-circle-tails, a new extrachromosomal structure that consists of circular telomeric DNA with a single-stranded tail. Structurally, the t-circle-tail resembles cyclized leading or lagging replication intermediates that are excised from the genome by topoisomerase II-mediated cleavage. We also show that the DNA damage repair machinery NHEJ is required for the formation of t-circle-tails and for the resolution of stalled replication forks, suggesting that NHEJ, which is normally constitutively suppressed at telomeres, is activated in the context of replication stress. Inhibition of NHEJ or knockout of DNA-PKcs impairs telomere replication, leading to multiple-telomere sites (MTS) and telomere shortening. Collectively, our results support a "looping-out" mechanism, in which the stalled replication fork is cut out and cyclized to form t-circle-tails, and broken DNA is religated. The telomere loss induced by replication stress may serve as a new factor that drives replicative senescence and cell aging.


Asunto(s)
Replicación del ADN , Acortamiento del Telómero , Telómero/fisiología , Senescencia Celular , Reparación del ADN por Unión de Extremidades , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , ADN Circular/química , ADN Circular/metabolismo , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Inestabilidad Genómica , Humanos , Conformación de Ácido Nucleico , Telómero/genética
17.
Mol Cell Proteomics ; 15(4): 1299-308, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27037360

RESUMEN

The mismatch repair (MMR) family is a highly conserved group of proteins that function in correcting base-base and insertion-deletion mismatches generated during DNA replication. Disruption of this process results in characteristic microsatellite instability (MSI), repair defects, and susceptibility to cancer. However, a significant fraction of MSI-positive cancers express MMR genes at normal levels and do not carry detectable mutation in known MMR genes, suggesting that additional factors and/or mechanisms may exist to explain these MSI phenotypes in patients. To systematically investigate the MMR pathway, we conducted a proteomic analysis and identified MMR-associated protein complexes using tandem-affinity purification coupled with mass spectrometry (TAP-MS) method. The mass spectrometry data have been deposited to the ProteomeXchange with identifier PXD003014 and DOI 10.6019/PXD003014. We identified 230 high-confidence candidate interaction proteins (HCIPs). We subsequently focused on MSH2, an essential component of the MMR pathway and uncovered a novel MSH2-binding partner, WDHD1. We further demonstrated that WDHD1 forms a stable complex with MSH2 and MSH3 or MSH6,i.e.the MutS complexes. The specific MSH2/WDHD1 interaction is mediated by the second lever domain of MSH2 and Ala(1123)site of WDHD1. Moreover, we showed that, just like MSH2-deficient cells, depletion of WDHD1 also led to 6-thioguanine (6-TG) resistance, indicating that WDHD1 likely contributes to the MMR pathway. Taken together, our study uncovers new components involved in the MMR pathway, which provides candidate genes that may be responsible for the development of MSI-positive cancers.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Proteínas de Unión al ADN/metabolismo , Neoplasias/metabolismo , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Sitios de Unión , Proteínas de Unión al ADN/química , Células HEK293 , Células HeLa , Humanos , Proteína 2 Homóloga a MutS/química , Proteína 2 Homóloga a MutS/metabolismo , Proteína 3 Homóloga de MutS , Unión Proteica
18.
J Cell Sci ; 128(2): 331-41, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25416818

RESUMEN

Most human cancers depend on the telomerase to maintain telomeres; however, about 10% of cancers are telomerase negative and utilize the alternative lengthening of telomeres (ALT) mechanism. Mutations in the DAXX gene have been found frequently in both telomerase-positive and ALT cells, and how DAXX mutations contribute to cancers remains unclear. We report here that endogenous DAXX can localize to Cajal bodies, associate with the telomerase and regulate telomerase targeting to telomeres. Furthermore, disease mutations that are located in different regions of DAXX differentially impact on its ability to interact with its binding partners and its targeting to Cajal bodies and telomeres. In addition, DAXX knockdown by RNA interference led to reduced telomerase targeting to telomeres and telomere shortening. These findings collectively support a DAXX-centric pathway for telomere maintenance, where DAXX interaction with the telomerase regulates telomerase assembly in Cajal bodies and telomerase targeting to telomeres.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Nucleares/genética , Telomerasa/genética , Homeostasis del Telómero/genética , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Co-Represoras , Cuerpos Enrollados/genética , Cuerpos Enrollados/metabolismo , ADN Helicasas/genética , Humanos , Hibridación Fluorescente in Situ , Chaperonas Moleculares , Mutación , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Interferencia de ARN , Telomerasa/metabolismo , Telómero/genética , Telómero/metabolismo
19.
J Cell Sci ; 127(Pt 9): 2029-39, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24569877

RESUMEN

Cajal bodies are specialized and dynamic compartments in the nucleus that are involved in the biogenesis of small nuclear ribonucleoproteins (snRNPs). Because of the dynamic and varied roles of Cajal bodies, it is of great interest to identify the components of Cajal bodies to better understand their functions. We performed a genome-wide screen to identify proteins that colocalize with coilin, the marker protein of Cajal bodies. In this study, we identified and characterized Fam118B as a newly discovered component of Cajal bodies. Fam118B is widely expressed in a variety of cell lines derived from various origins. Overexpression of Fam118B changes the canonical morphology of Cajal bodies, whereas depletion of Fam118B disrupts the localization of components of Cajal bodies, including coilin, the survival of motor neuron protein (SMN) and the Sm protein D1 (SmD1, also known as SNRPD1). Moreover, depletion of Fam118B reduces splicing capacity and inhibits cell proliferation. In addition, Fam118B associates with coilin and SMN proteins. Fam118B depletion reduces symmetric dimethylarginine modification of SmD1, which in turn diminishes the binding of SMN to this Sm protein. Taken together, these data indicate that Fam118B, by regulating SmD1 symmetric dimethylarginine modification, plays an important role in Cajal body formation, snRNP biogenesis and cell viability.


Asunto(s)
Proliferación Celular/fisiología , Supervivencia Celular/fisiología , Cuerpos Enrollados/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteínas del Complejo SMN/metabolismo , Arginina/análogos & derivados , Arginina/metabolismo , Línea Celular , Células HeLa , Humanos , Inmunoprecipitación , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
20.
J Biol Chem ; 289(49): 34024-32, 2014 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-25294876

RESUMEN

Structural maintenance of chromosomes flexible hinge domain containing 1 (SMCHD1) has been shown to be involved in gene silencing and DNA damage. However, the exact mechanisms of how SMCHD1 participates in DNA damage remains largely unknown. Here we present evidence that SMCHD1 recruitment to DNA damage foci is regulated by 53BP1. Knocking out SMCHD1 led to aberrant γH2AX foci accumulation and compromised cell survival upon DNA damage, demonstrating the critical role of SMCHD1 in DNA damage repair. Following DNA damage induction, SMCHD1 depletion resulted in reduced 53BP1 foci and increased BRCA1 foci, as well as less efficient non-homologous end joining (NHEJ) and elevated levels of homologous recombination (HR). Taken together, these results suggest an important function of SMCHD1 in promoting NHEJ and repressing HR repair in response to DNA damage.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Reparación del ADN por Unión de Extremidades/genética , ADN de Neoplasias/metabolismo , Regulación Neoplásica de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/genética , Reparación del ADN por Recombinación/genética , Antibióticos Antineoplásicos/farmacología , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Bleomicina/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Proteínas Cromosómicas no Histona/antagonistas & inhibidores , Proteínas Cromosómicas no Histona/metabolismo , Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN por Unión de Extremidades/efectos de los fármacos , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteoblastos/patología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Reparación del ADN por Recombinación/efectos de los fármacos , Transducción de Señal , Proteína 1 de Unión al Supresor Tumoral P53
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA