Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Ann Hematol ; 103(8): 2699-2709, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38736014

RESUMEN

There has been no severity evaluation model for pediatric patients with hemophagocytic lymphohistiocytosis (HLH) that uses readily available parameters. This study aimed to develop a novel model for predicting the early mortality risk in pediatric patients with HLH using easily obtained parameters whatever etiologic subtype. Patients from one center were divided into training and validation sets for model derivation. The developed model was validated using an independent validation cohort from the second center. The prediction model with nomogram was developed based on logistic regression. The model performance underwent internal and external evaluation and validation using the area under the receiver operating characteristic curve (AUC), calibration curve with 1000 bootstrap resampling, and decision curve analysis (DCA). Model performance was compared with the most prevalent severity evaluation scores, including the PELOD-2, P-MODS, and pSOFA scores. The prediction model included nine variables: glutamic-pyruvic transaminase, albumin, globulin, myohemoglobin, creatine kinase, serum potassium, procalcitonin, serum ferritin, and interval between onset and diagnosis. The AUC of the model for predicting the 28-day mortality was 0.933 and 0.932 in the training and validation sets, respectively. The AUC values of the HScore, PELOD-2, P-MODS and pSOFA were 0.815, 0.745, 0.659 and 0.788, respectively. The DCA of the 28-day mortality prediction exhibited a greater net benefit than the HScore, PELOD-2, P-MODS and pSOFA. Subgroup analyses demonstrated good model performance across HLH subtypes. The novel mortality prediction model in this study can contribute to the rapid assessment of early mortality risk after diagnosis with readily available parameters.


Asunto(s)
Linfohistiocitosis Hemofagocítica , Humanos , Linfohistiocitosis Hemofagocítica/mortalidad , Linfohistiocitosis Hemofagocítica/diagnóstico , Linfohistiocitosis Hemofagocítica/sangre , Femenino , Masculino , Preescolar , Niño , Lactante , Medición de Riesgo , Índice de Severidad de la Enfermedad , Adolescente , Nomogramas , Estudios Retrospectivos , Curva ROC , Factores de Riesgo
2.
Ann Hematol ; 2024 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-39463183

RESUMEN

Understanding the early features and characteristics of hemophagocytic lymphohistiocytosis (HLH) is essential for identifying high-risk individuals and also providing valuable pathological insights. This study aims to investigate the characteristics and trends of blood and hepatic parameters before an HLH diagnosis was established. Longitudinal hematological and hepatic test results from pediatric patients with HLH and an age- and sex-matched control group were analyzed. According to the length of time between hospital admission and the establishment of the HLH diagnosis, the HLH cases were divided into early-onset (≤ 7 days) and late-onset (> 7days) groups. Among the 229 pediatric HLH patients, the length of time between hospital admission and the establishment of an HLH diagnosis ranged from 0 to 41 days (median = 4 days). Over 80% of pediatric HLH patients presented abnormal laboratory results for aspartate aminotransferase (AST), triglycerides, lactate dehydrogenase (LDH), and hemoglobin at admission. The abnormal rates in the initial platelet count, neutrophil count, and fibrinogen tests were 67.3%, 48.3%, and 52.2%, respectively. The initial test results for AST, alanine aminotransferase (ALT), LDH, serum sodium, and albumin showed AUCs > 80% for discriminating early-onset HLH. For the discrimination of late-onset HLH, the performance of initial test results was poor. To conclude, abnormalities in AST, triglycerides, LDH, and hemoglobin are early presentations of pediatric HLH; platelet, neutrophil, and fibrinogen levels may become abnormal at a relatively late stage of the HLH disease trajectory; and the initial test results for AST, ALT, LDH, serum sodium, and albumin can be used to identify suspected early-onset HLH.

3.
Neurosurg Rev ; 47(1): 200, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722409

RESUMEN

Appropriate needle manipulation to avoid abrupt deformation of fragile vessels is a critical determinant of the success of microvascular anastomosis. However, no study has yet evaluated the area changes in surgical objects using surgical videos. The present study therefore aimed to develop a deep learning-based semantic segmentation algorithm to assess the area change of vessels during microvascular anastomosis for objective surgical skill assessment with regard to the "respect for tissue." The semantic segmentation algorithm was trained based on a ResNet-50 network using microvascular end-to-side anastomosis training videos with artificial blood vessels. Using the created model, video parameters during a single stitch completion task, including the coefficient of variation of vessel area (CV-VA), relative change in vessel area per unit time (ΔVA), and the number of tissue deformation errors (TDE), as defined by a ΔVA threshold, were compared between expert and novice surgeons. A high validation accuracy (99.1%) and Intersection over Union (0.93) were obtained for the auto-segmentation model. During the single-stitch task, the expert surgeons displayed lower values of CV-VA (p < 0.05) and ΔVA (p < 0.05). Additionally, experts committed significantly fewer TDEs than novices (p < 0.05), and completed the task in a shorter time (p < 0.01). Receiver operating curve analyses indicated relatively strong discriminative capabilities for each video parameter and task completion time, while the combined use of the task completion time and video parameters demonstrated complete discriminative power between experts and novices. In conclusion, the assessment of changes in the vessel area during microvascular anastomosis using a deep learning-based semantic segmentation algorithm is presented as a novel concept for evaluating microsurgical performance. This will be useful in future computer-aided devices to enhance surgical education and patient safety.


Asunto(s)
Algoritmos , Anastomosis Quirúrgica , Aprendizaje Profundo , Humanos , Anastomosis Quirúrgica/métodos , Proyectos Piloto , Microcirugia/métodos , Microcirugia/educación , Agujas , Competencia Clínica , Semántica , Procedimientos Quirúrgicos Vasculares/métodos , Procedimientos Quirúrgicos Vasculares/educación
4.
Acta Neurochir (Wien) ; 166(1): 6, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38214753

RESUMEN

PURPOSE: Attaining sufficient microsurgical skills is paramount for neurosurgical trainees. Kinematic analysis of surgical instruments using video offers the potential for an objective assessment of microsurgical proficiency, thereby enhancing surgical training and patient safety. The purposes of this study were to develop a deep-learning-based automated instrument tip-detection algorithm, and to validate its performance in microvascular anastomosis training. METHODS: An automated instrument tip-tracking algorithm was developed and trained using YOLOv2, based on clinical microsurgical videos and microvascular anastomosis practice videos. With this model, we measured motion economy (procedural time and path distance) and motion smoothness (normalized jerk index) during the task of suturing artificial blood vessels for end-to-side anastomosis. These parameters were validated using traditional criteria-based rating scales and were compared across surgeons with varying microsurgical experience (novice, intermediate, and expert). The suturing task was deconstructed into four distinct phases, and parameters within each phase were compared between novice and expert surgeons. RESULTS: The high accuracy of the developed model was indicated by a mean Dice similarity coefficient of 0.87. Deep learning-based parameters (procedural time, path distance, and normalized jerk index) exhibited correlations with traditional criteria-based rating scales and surgeons' years of experience. Experts completed the suturing task faster than novices. The total path distance for the right (dominant) side instrument movement was shorter for experts compared to novices. However, for the left (non-dominant) side, differences between the two groups were observed only in specific phases. The normalized jerk index for both the right and left sides was significantly lower in the expert than in the novice groups, and receiver operating characteristic analysis showed strong discriminative ability. CONCLUSION: The deep learning-based kinematic analytic approach for surgical instruments proves beneficial in assessing performance in microvascular anastomosis. Moreover, this methodology can be adapted for use in clinical settings.


Asunto(s)
Aprendizaje Profundo , Cirujanos , Humanos , Movimiento (Física) , Algoritmos , Anastomosis Quirúrgica , Competencia Clínica
5.
J Clin Immunol ; 43(5): 989-998, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36877313

RESUMEN

PURPOSE: The first step in diagnosing hemophagocytic lymphohistiocytosis (HLH) is to suspect its presence and then order the appropriate diagnostic tests. The development of screening procedures for HLH could facilitate early diagnosis. In this study, we evaluated the utility of fever, splenomegaly, and cytopenias as screening criteria for identifying pediatric HLH at an early stage, built a screening model using commonly measured laboratory parameters, and developed a step-wise screening procedure for pediatric HLH. METHODS: The medical records of 83,965 pediatric inpatients, including 160 patients with HLH, were collected retrospectively. The utility of fever, splenomegaly, hemoglobin level, and platelet and neutrophil counts at hospital admission as screening criteria for HLH was evaluated. For HLH patients who might be missed by screening based on the presence of fever, splenomegaly, and cytopenias, a screening model using common laboratory parameters was developed. Following that, a three-step screening procedure was then developed. RESULTS: The criteria of cytopenias affecting two or more lineages plus fever or splenomegaly had a sensitivity of 51.9% and a specificity of 98.4% for identifying HLH in pediatric inpatients. Our screening score model comprises six parameters: splenomegaly, platelet count, neutrophil count, albumin level, total bile acid level, and lactate dehydrogenase level. The use of the validation set had a sensitivity of 87.0% and a specificity of 90.6%. A three-step screening procedure has been developed: Step 1: Is fever or splenomegaly present? (Yes: risk for HLH should be considered, go to Step 2; No: less likely HLH); Step 2: Are cytopenias affecting at least two lineages? (Yes: consider HLH; No: go to Step 3); Step 3: Calculate the screening score. Is the sum of the score greater than 37? (Yes: consider HLH; No: less likely HLH). The overall sensitivity and specificity of the three-step screening procedure were 91.9% and 94.4%, respectively. CONCLUSION: A significant proportion of pediatric HLH patients present at the hospital without having all three symptoms: fever, splenomegaly, and cytopenias. Our three-step screening procedure, utilizing commonly available clinical and laboratory parameters, can effectively identify pediatric patients who may be at high risk for HLH.


Asunto(s)
Anemia , Leucopenia , Linfohistiocitosis Hemofagocítica , Trombocitopenia , Humanos , Niño , Linfohistiocitosis Hemofagocítica/diagnóstico , Esplenomegalia/diagnóstico , Estudios Retrospectivos , Fiebre/diagnóstico , Fiebre/etiología
6.
J Clin Immunol ; 43(8): 1997-2010, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37653176

RESUMEN

Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening hyperinflammatory syndrome characterized by excessive activation of the immune system, along with uncontrolled proliferation of activated macrophages and lymphocytes. The clinical features of HLH often overlap with the clinical features of other severe inflammatory conditions such as sepsis, hindering accurate and timely diagnosis. In this study, we performed a data-independent acquisition mass spectrometry-based plasma proteomic analysis of 33 pediatric patients with HLH compared with four control groups: 39 healthy children, 43 children with sepsis, 39 children hospitalized in the pediatric intensive care unit without confirmed infections, and 21 children with acute Epstein-Barr virus infection. Proteomic comparisons between the HLH group and each of the control groups showed that HLH was characterized by alterations in complement and coagulation cascades, neutrophil extracellular trap formation, and platelet activation pathways. We identified eight differentially expressed proteins in patients with HLH, including plastin-2 (LCP1), vascular cell adhesion protein 1, fibrinogen beta chain, fibrinogen gamma chain, serum amyloid A-4 protein, extracellular matrix protein 1, apolipoprotein A-I, and albumin. LCP1 emerged as a candidate diagnostic marker for HLH with an area under the curve (AUC) of 0.97 in the original cohort and an AUC of 0.90 (sensitivity = 0.83 and specificity = 1.0) in the validation cohort. Complement C1q subcomponent subunit B was associated with disease severity in patients with HLH. Based on comparisons with multiple control groups, this study provides a proteomic profile and candidate biomarkers of HLH, offering researchers novel information to improve the understanding of this condition.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Linfohistiocitosis Hemofagocítica , Sepsis , Humanos , Niño , Linfohistiocitosis Hemofagocítica/diagnóstico , Infecciones por Virus de Epstein-Barr/diagnóstico , Enfermedad Crítica , Proteómica , Herpesvirus Humano 4 , Sepsis/diagnóstico , Biomarcadores , Factor B del Complemento , Fibrinógeno
7.
Sensors (Basel) ; 23(14)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37514888

RESUMEN

Cardiac function indices must be calculated using tracing from short-axis images in cine-MRI. A 3D-CNN (convolutional neural network) that adds time series information to images can estimate cardiac function indices without tracing using images with known values and cardiac cycles as the input. Since the short-axis image depicts the left and right ventricles, it is unclear which motion feature is captured. This study aims to estimate the indices by learning the short-axis images and the known left and right ventricular ejection fractions and to confirm the accuracy and whether each index is captured as a feature. A total of 100 patients with publicly available short-axis cine images were used. The dataset was divided into training:test = 8:2, and a regression model was built by training with the 3D-ResNet50. Accuracy was assessed using a five-fold cross-validation. The correlation coefficient, MAE (mean absolute error), and RMSE (root mean squared error) were determined as indices of accuracy evaluation. The mean correlation coefficient of the left ventricular ejection fraction was 0.80, MAE was 9.41, and RMSE was 12.26. The mean correlation coefficient of the right ventricular ejection fraction was 0.56, MAE was 11.35, and RMSE was 14.95. The correlation coefficient was considerably higher for the left ventricular ejection fraction. Regression modeling using the 3D-CNN indicated that the left ventricular ejection fraction was estimated more accurately, and left ventricular systolic function was captured as a feature.


Asunto(s)
Función Ventricular Izquierda , Función Ventricular Derecha , Humanos , Volumen Sistólico , Imagen por Resonancia Cinemagnética/métodos , Corazón
8.
J Environ Manage ; 344: 118611, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37453301

RESUMEN

Polychlorinated dibenzo-p-dioxin/furans (PCDD/F) have a great threat to the environment and human health, resulting in controlling PCDD/F emissions to regulation far important for emission source. Considering 2,3,4,7,8-pentachlorodibenzo-p-furan (PeCDF) identified as the most contributor to international toxic equivalent, 2,3,4,7,8-PeCDF can be considered as the target molecule for the adsorption of PCDD/F emission from industries. With the aim to in-depth elucidate how different types of nitrogen (N) species enhance 2,3,4,7,8-PeCDF on the biochar and guide the specific carbon materials design for industries, systematic computational investigations by density functional theory calculations were conducted. The results indicate pristine biochar intrinsically interacts with 2,3,4,7,8-PeCDF by π-π electron donor and acceptor (EDA) interaction, six-membered carbon rings of PeCDF parallel to the biochar surface as the strongest adsorption configuration. Moreover, by comparison of adsorption energy (-150.16 kJ mol-1) and interaction distance (3.593 Å) of pristine biochar, environment friendly N doping can enhance the adsorption of 2,3,4,7,8-PeCDF on biochar. Compared with graphitic N doping and pyridinic N doping, pyrrolic N doping biochar presents the strongest interaction toward 2,3,4,7,8-PeCDF molecule due to the highest adsorption energy (-155.56 kJ mol-1) and shortest interaction distance (3.532 Å). Specially, the enhancing adsorption of PeCDF over N doped biochar attributes to the enhancing π-π electron EDA interaction and electrostatic interaction. In addition, the effect of N doping species on PeCDF adsorbed on the biochar is more than that of N doping content. Specially, the adsorption capacity of N doping biochar for PCDD/F can be improved by adding pyrrolic N group most efficiently. Furthermore, pyrrolic N and pyridinic N doping result in the entropy increase, and electrons transform from pyrrolic N and pyridinic N doped biochar to 2,3,4,7,8-PeCDF molecule. A complete understanding of the research would supply crucial information for applying N-doped biochar to effectively remove PCDD/F for industries.


Asunto(s)
Nitrógeno , Dibenzodioxinas Policloradas , Humanos , Adsorción , Carbono
9.
Small ; 18(8): e2105388, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34894073

RESUMEN

Neurons can be modified to express light-sensitive proteins for enabling stimulation with a high spatial and temporal resolution, but such techniques require gene transfection and systematical implantation. Here, a black phosphorus nanosheet-based injectable strategy is described for wireless neural stimulation both in vitro and in vivo without cell modifications. These nanosheets, with minimal invasiveness, high biocompatibility, and biodegradability, are anchored on cell membranes as miniature near-infrared (NIR) light transducers to create local heating for neural activity excitation. Based on cultured multielectrode-array recording, in vivo electrophysiology analysis, and open field behavioral tests, it is demonstrated that remotely applied NIR illumination can reliably trigger spiking activity in cultured neurons and rat brains. Excitingly, reliable regulation of brain function to control animal behaviors is also described. Moreover, this approach has shown its potential for future clinical use by successful high-frequency stimulation in cells and animals in this proof-of-concept study. It is believed that this new method will offer a powerful alternative to other neural stimulation solutions and potentially be of independent value to the healthcare system.


Asunto(s)
Sistemas de Liberación de Medicamentos , Fósforo , Animales , Neuronas , Ratas
10.
J Fluoresc ; 29(2): 399-406, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30680508

RESUMEN

Smart and versatile salicylaldehyde Schiff's bases have been proved their excellent performances including large shocks shift, dual emission wavelengths and sensitive to environment for fluorescence analysis. Herein, a simple salicylaldehyde Schiff's base molecular (PBAS) with aggregation-induced emission (AIE) and the excited-state intramolecular proton-transfer (ESIPT) effects was constructed for detecting N2H4 and ClO-. The highly specific and sensitive response to N2H4 was witnessed by the fast turn-on of the strong blue fluorescence and to ClO- was observed by the rapid turn off of the weak green fluorescence simultaneous decomposing of the probe. The results of mass spectrum analysis showed that probe PBAS decomposed under the influence of N2H4, whereas probe PBAS can complex with ClO- and prevent effective ESIPT process. Benefiting from its high properties, this fluorescence molecular provides an effective tool for probing N2H4 and ClO- in live cells.

11.
J Mater Sci Mater Med ; 31(1): 6, 2019 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-31838592

RESUMEN

Titanium (Ti) alloys have been introduced in magnetic resonance (MR) safe implantable medical devices because the susceptibility of Ti is approximately 1/10 that of the Co-Cr-Ni alloy (Elgiloy), which was the previously preferred MR-safe material. The torque applied to metallic materials in an MR imaging (MRI) scanner is commonly believed to increase with the susceptibility of the material. However, a visual inspection showed that the torque applied to Ti alloy cerebral aneurysm clips is comparable with that in the case of those of Elgiloy. In this study, we measured the torque applied to the small test pieces of rods and aneurysm clips quantitatively in a 3-T MRI using an accurate self-developed torque measurement apparatus. The maximum torques of Ti alloy and Elgiloy rod test pieces were comparable as 1.1 and 1.2 µN·m, respectively. The values for Ti alloy aneurysm clips were distinctly higher than the values for those of Elgiloy. These contradictory results of a larger torque for smaller-susceptibility products could be explained by our new theory, which takes into account the crystal susceptibility anisotropy in addition to the conventional torque due to the shape anisotropy.


Asunto(s)
Materiales Biocompatibles , Imagen por Resonancia Magnética , Instrumentos Quirúrgicos , Titanio/química , Torque , Ensayo de Materiales
12.
J Comput Assist Tomogr ; 42(4): 522-526, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29369943

RESUMEN

OBJECTIVE: The objective of this study was to show the effect of the number of sampling points (NS) and the maximum b value (bmax) on fiber crossing detection in diffusion spectrum imaging (DSI) in clinical practice. METHODS: We performed 3-Tesla DSI in which we changed the NS (62-258) while keeping bmax at 8000 s/mm and in which we changed the bmax (4000-8000 s/mm) while keeping the NS at 129. The superior longitudinal fasciculus volume and the proportion of nerve voxels in which at least 2 (Rcr2) or 3 (Rcr3) nerve fiber bundles crossed were calculated. RESULTS: When bmax was set to 8000 s/mm, mean Rcr2 and Rcr3 values and superior longitudinal fasciculus volumes significantly increased with higher NSs, but they did not significantly change when we varied bmax with 129 NS. CONCLUSIONS: Depiction sensitivity of nerve fiber crossing in DSI improves at higher NS and bmax settings, but a bmax insensitivity appears at an intermediate NS such as 129.


Asunto(s)
Encéfalo/anatomía & histología , Imagen de Difusión Tensora/métodos , Fibras Nerviosas/ultraestructura , Adulto , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Vías Nerviosas/anatomía & histología , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Adulto Joven
13.
J Am Chem Soc ; 139(7): 2657-2663, 2017 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-28142240

RESUMEN

The soft template method is broadly applied to the fabrication of hollow-structured nanomaterials. However, due to the instability and the typical spherical shape of these soft templates, the resultant particles have a spherical morphology with a wide size distribution. Herein, we developed a sustainable route to fabricate asymmetric flasklike hollow carbonaceous structures with a highly uniform morphology and a narrow size distribution using the soft template method. A dynamic growth mechanism induced by the synergetic interactions between template and biomass is proposed. The precursors (ribose) provide an acidic environment for sodium oleate during the hydrothermal process in which oleic acid nanoemulsions are initially formed and serve as both template and benign solvent for the amphiphilic derivatives of the precursor. Simultaneously, the cosurfactant P123 facilitates the uniform dispersion of the nanoemulsion and is believed to cause the carbonaceous shells to rupture, providing openings through which the intermediates can enter. These subtle interactions facilitate the formation of the flasklike, asymmetric, hollow, carbonaceous nanoparticles. Furthermore, this unique structure contributes to the high surface area (2335 m2 g-1) of the flasklike carbon particles, which enhances the performance of supercapacitors. These findings may open up an exciting field for exploring anisotropic carbonaceous nanomaterials and for understanding the related mechanisms to provide guidance for the design of increasingly complex carbonaceous materials.

14.
Stem Cells ; 34(8): 2130-44, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27096933

RESUMEN

The phosphorylated form of Pten (p-Pten) is highly expressed in >70% of acute myeloid leukemia samples. However, the role of p-Pten in normal and abnormal hematopoiesis has not been studied. We found that Pten protein levels are comparable among long-term (LT) hematopoietic stem cells (HSCs), short-term (ST) HSCs, and multipotent progenitors (MPPs); however, the levels of p-Pten are elevated during the HSC-to-MPP transition. To study whether p-Pten is involved in regulating self-renewal and differentiation in HSCs, we compared the effects of overexpression of p-Pten and nonphosphorylated Pten (non-p-Pten) on the hematopoietic reconstitutive capacity (HRC) of HSCs. We found that overexpression of non-p-Pten enhances the LT-HRC of HSCs, whereas overexpression of p-Pten promotes myeloid differentiation and compromises the LT-HRC of HSCs. Such phosphorylation-regulated Pten functioning is mediated by repressing the cell:cell contact-induced activation of Fak/p38 signaling independent of Pten's lipid phosphatase activity because both p-Pten and non-p-Pten have comparable activity in repressing PI3K/Akt signaling. Our studies suggest that, in addition to repressing PI3K/Akt/mTor signaling, non-p-Pten maintains HSCs in bone marrow niches via a cell-contact inhibitory mechanism by inhibiting Fak/p38 signaling-mediated proliferation and differentiation. In contrast, p-Pten promotes the proliferation and differentiation of HSCs by enhancing the cell contact-dependent activation of Src/Fak/p38 signaling. Stem Cells 2016;34:2130-2144.


Asunto(s)
Células Madre Hematopoyéticas/metabolismo , Fosfohidrolasa PTEN/metabolismo , Nicho de Células Madre , Animales , Diferenciación Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Inhibición de Contacto , Proteína-Tirosina Quinasas de Adhesión Focal/antagonistas & inhibidores , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones Endogámicos C57BL , Células Progenitoras Mieloides/citología , Células Progenitoras Mieloides/metabolismo , Invasividad Neoplásica , Fosforilación , Fosfotirosina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factores de Tiempo , Transducción Genética , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Familia-src Quinasas/metabolismo
15.
Mol Ther ; 22(2): 430-439, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24089140

RESUMEN

Although activation of hedgehog (Hh) signaling has been shown to induce osteogenic differentiation in vitro and bone formation in vivo, the underlying mechanisms and the potential use of Hh-activated mesenchymal progenitors in bone defect repair remain elusive. In this study, we demonstrated that implantation of periosteal-derived mesenchymal progenitor cells (PDMPCs) that overexpressed an N-terminal sonic hedgehog peptide (ShhN) via an adenoviral vector (Ad-ShhN) restored periosteal bone collar formation in a 4-mm segmental bone allograft model in immunodeficient mice. Ad-ShhN enhanced donor cell survival and microvessel formation in collagen scaffold at 2 weeks after surgery and induced donor cell-dependent bone formation at 6 weeks after surgery. Fluorescence-activated cell sorting analysis further showed that Ad-ShhN-PDMPC-seeded scaffold contained a twofold more CD45(-)Sca-1(+)CD34(+)VEGFR2(+) endothelial progenitors than Ad-LacZ-PDMPC-seeded scaffold at day 7 after surgery. Ad-ShhN-transduced PDMPCs induced a 1.8-fold more CD31(+) microvessel formation than Ad-LacZ-transduced PDMPCs in a coculture of endothelial progenitors and PDMPCs. Taken together, our data show that overexpression of ShhN in mesenchymal progenitors improves bone defect reconstruction by enhancing donor progenitor cell survival, differentiation, and scaffold revascularization at the site of compromised periosteum. Hh agonist-based therapy, therefore, merits further investigation in tissue engineering-based applications aimed at enhancing bone defect repair and reconstruction.


Asunto(s)
Trasplante Óseo , Expresión Génica , Proteínas Hedgehog/genética , Osteogénesis/fisiología , Fragmentos de Péptidos/genética , Periostio/metabolismo , Animales , Diferenciación Celular , Supervivencia Celular/genética , Colágeno/metabolismo , Células Endoteliales/metabolismo , Proteínas Hedgehog/química , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Neovascularización Fisiológica/genética , Osteoblastos/citología , Osteoblastos/metabolismo , Andamios del Tejido , Trasplante Homólogo
16.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(3): 231-236, 2024 Mar.
Artículo en Zh | MEDLINE | ID: mdl-38538349

RESUMEN

Trajectories refer to the motion paths followed by objects in space. Disease trajectories, which depict the evolution of disease processes over time, are significantly important for assessing diseases, formulating treatment strategies, and predicting prognosis. Critical illness is one of the leading causes of death. With advances in critical care medicine, there is increasing focus on the occurrence and development of critical illnesses. Understanding the development trajectory of critical illness is helpful to promote the early identification, intervention, and treatment of high-risk patients, avoid prolongation of the course of disease, reduce the risk of multiple organ failure, and provide important reference for the development of targeted prevention and intervention strategies, thereby reducing the incidence and mortality of critical illness. In recent years, various trajectory modeling methods have been applied to the study of critical illness. These include, but are not limited to, latent growth curve modeling (LGCM), growth mixture modeling (GMM), group-based trajectory modeling (GBTM), latent transition analysis (LTA), and latent class analysis (LCA). The aim of this article is to review the definition of disease trajectories, the methods used in trajectory modeling, and their applications and future prospects in critical illness research.


Asunto(s)
Cuidados Críticos , Enfermedad Crítica , Humanos , Pronóstico , Incidencia
17.
Environ Sci Pollut Res Int ; 31(17): 26170-26181, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38498134

RESUMEN

The wet flue gas desulfurization (WFGD) system of coal-fired power plants shows a good removal effect on condensable particulate matter (CPM), reducing the dust removal pressure for the downstream flue gas purification devices. In this work, the removal effect of a WFGD system on CPM and its organic pollutants from a coal-fired power plant was studied. By analyzing the organic components of the by-products emitted from the desulfurization tower, the migration characteristics of organic pollutants in gas, liquid, and solid phases, as well as the impact of desulfurization towers on organic pollutants in CPM, were discussed. Results show that more CPM in the flue gas was generated by coal-fired units at ultra-low load, and the WFGD system had a removal efficiency nearly 8% higher than that at full load. The WFGD system had significant removal effect on two typical esters, especially phthalate esters (PAEs), with the highest removal efficiency of 49.56%. In addition, the WFGD system was better at removing these two esters when the unit was operating at full load. However, it had a negative effect on n-alkanes, which increased the concentration of n-alkanes by 8.91 to 19.72%. Furthermore, it is concluded that the concentration distribution of the same type of organic pollutants in desulfurization wastewater was similar to that in desulfurization slurry, but quite different from that in coal-fired flue gas. The exchange of three organic pollutants between flue gas and desulfurization slurry was not significant, while the concentration distribution of organic matters in gypsum was affected by coal-fired flue gas.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Ambientales , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Gases , Centrales Eléctricas , Carbón Mineral , Alcanos
18.
Heliyon ; 10(5): e27034, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38463854

RESUMEN

Tuberculosis (TB) is an important public health problem, and the One Health approach is essential for controlling zoonotic tuberculosis. Therefore, a rationally designed and more effective TB vaccine is urgently needed. To enhance vaccine efficacy, it is important to design vaccine candidates that stimulate both cellular and humoral immunity against TB. In this study, we fused the secreted protein Ag85A as the T cell antigen with truncated forms of the mycobacterial cell wall protein PstS1 with B cell epitopes to generate vaccine candidates, Ag85A-tnPstS1 (AP1, AP2, and AP3), and tested their immunogenicity and protective efficacy in mice. The three vaccine candidates induced a significant increase in the levels of T cell-related cytokines such as IFN-γ and IL-17, and AP1 and AP2 can induce more balanced Th1/Th2 responses than AP3. Strong humoral immune responses were also observed in which the production of IgG antibodies including its subclasses IgG1, IgG2c, and IgG3 was tremendously stimulated. AP1 and AP2 induced early antibody responses and more IgG3 isotype antibodies than AP3. Importantly, the mice immunised with the subunit vaccine candidates, particularly AP1 and AP2, had lower bacterial burdens than the control mice. Moreover, the serum from immunised mice can enhance phagocytosis and phagosome-lysosome fusion in macrophages, which can help to eradicate intracellular bacteria. These results indicate that the subunit vaccines Ag85A-tnPstS1 can be promising vaccine candidates for tuberculosis prevention.

19.
Sci Total Environ ; 921: 170911, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38354796

RESUMEN

Elucidation of the catalytic decomposition mechanism of dioxins is pivotal in developing highly efficient dioxin degradation catalysts. In order to accurately simulate the whole molecular structure of dioxins, two model compounds, o-dichlorobenzene (o-DCB) and furan, were employed to represent the chlorinated benzene ring and oxygenated central ring within a dioxin molecule, respectively. Experiments and Density Functional Theory (DFT) calculations were combined to investigate the adsorption as well as oxidation of o-DCB and furan over MnOx-CeO2/TiO2 catalyst (denoted as MnCe/Ti). The results indicate that competitive adsorption exists between furan and o-DCB. The former exhibits superior adsorption capacity on MnCe/Ti catalyst at 100 °C - 150 °C, for it can adsorb on both surface metal atom and surface oxygen vacancies (Ov) via its O-terminal; while the latter adsorbs primarily by anchoring its Cl atom to surface Ov. Regarding oxidation, furan can be completely oxidized at 150 °C - 300 °C with a high CO2 selectivity (above 80 %). However, o-DCB cannot be totally oxidized and the resulting intermediates cause the deactivation of catalyst. Interestingly, the pre-adsorption of furan on catalyst surface can facilitate the catalytic oxidation of o-DCB below 200 °C, possibly because the dissociated adsorption of furan may form additional reactive oxygen species on catalyst surface. Therefore, this work provides new insights into the catalytic decomposition mechanism of dioxins as well as the optimization strategies for developing dioxin-degradation catalysts with high efficiency at low temperature.

20.
Magn Reson Med Sci ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38494701

RESUMEN

17O-labeled water is a T2-shortening contrast agent used in proton MRI and is a promising method for visualizing cerebrospinal fluid (CSF) dynamics because it provides long-term tracking of water molecules. However, various external factors reduce the accuracy of 17O-concentration measurements using conventional signal-intensity-based methods. In addition, T2 mapping, which is expected to provide a stable assessment, is generally limited to temporal-spatial resolution. We developed the T2-prepared based on T2 mapping used in cardiac imaging to adapt to long T2 values and tested whether it could accurately measure 17O-concentration in the CSF using a phantom. The results showed that 17O-concentration in a fluid mimicking CSF could be evaluated with an accuracy comparable to conventional T2-mapping (Carr-Purcell-Meiboom-Gill multi-echo spin-echo method). This method allows 17O-imaging with a high temporal resolution and stability in proton MRI. This imaging technique may be promising for visualizing CSF dynamics using 17O-labeled water.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA