RESUMEN
Covering: 1925 to July 2023Among the sesquiterpenoids with rich structural diversity and potential bioactivities, lindenane sesquiterpenoids (LSs) possess a characteristic cis, trans-3,5,6-carbocyclic skeleton and mainly exist as monomers and diverse oligomers in plants from the Lindera genus and Chloranthaceae family. Since the first identification of lindeneol from Lindera strychnifolia in 1925, 354 natural LSs and their oligomers with anti-inflammatory, antitumor, and anti-infective activities have been discovered. Structurally, two-thirds of LSs exist as oligomers with interesting skeletons through diverse polymeric patterns, especially Diels-Alder [4 + 2] cycloaddition. Fascinated by their diverse bioactivities and intriguing polycyclic architectures, synthetic chemists have engaged in the total synthesis of natural LSs in recent decades. In this review, the research achievements related to LSs from 1925 to July of 2023 are systematically and comprehensively summarized, focusing on the classification of their structures, chemical synthesis, and bioactivities, which will be helpful for further research on LSs and their oligomers.
Asunto(s)
Antiinfecciosos , Sesquiterpenos , Sesquiterpenos/química , Antiinfecciosos/química , Reacción de Cicloadición , AntiinflamatoriosRESUMEN
Accumulation of persistent organic pollutants polycyclic aromatic hydrocarbons (PAHs) in soil has become a global problem. Composting is considered one of the more economical methods of soil remediation and is important for the resourceful use of wastes. Agroforestry waste is produced in huge amounts and is utilized at low rates, hence there is an urgent need to manage it. Here, leaf (LVS) or rice straw (SVS) was co-composting with aged contaminated soil to investigate bacteria interaction to PAHs degradation and humus formation. The degradation rate of high molecular weight PAHs (HMW-PAHs) in LVS and SVS reached 58.9% and 52.5%, and the low molecular weight PAHs (LMW-PAHs) were 77.5% and 65%. Meanwhile, the humus increased by 44.8% and 60.5% in LVS and SVS at the end of co-composting. The topological characteristics and community assembly of the bacterial community showed that LVS had higher complexity and more keystones than SVS, suggesting that LVS might more beneficial for the degradation of PAHs. The stability of the co-occurrence network and stochastic processes (dispersal limitation) dominated community assembly made SVS beneficial for humus formation. Mantel test and structural equation models indicated that the transformation of organic matter was important for PAHs degradation and humus formation. Degradation of HMW-PAHs led to bacterial succession, which affected the formation of precursors and ultimately increased the humus content. This study provided potential technology support for improving the quality of agroforestry organic waste composting and degrading PAHs in aged contaminated soil.
Asunto(s)
Compostaje , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Biodegradación Ambiental , Contaminantes del Suelo/análisis , Suelo/química , Bacterias/metabolismo , Microbiología del SueloRESUMEN
Photosensitive materials, such as energetic complexes, usually have high sensitivity and cause heavy-metal pollution, whereas others, like carbon black and dye, do not contain energy, which affects energy output and mechanical properties. In this work, donor-acceptor π-conjugated energetic catalysts, denoted as D-n, are designed and synthesized. Nonmetallic hybrid energetic composites are prepared by assembling the as-synthesized catalysts into multiscale ammonium perchlorate (AP). Composites containing catalysts and APs can be successfully ignited without the involvement of metals. The new ignition mechanism is further analyzed using experimental and theoretical analyses such as UV-vis-near-infrared (NIR) spectra, electron-spin resonance spectroscopy, and energy-gap analysis. The shortest ignition delay time is 56 ms under the experimental condition of a NIR wavelength of 1064 nm and a laser power of 10 W. At the voltage of 1 kV and the electric field of 500 V mm-1 , the laser-ignition delay time of D-2/AP hybrid composite decreases from 56 to 35 ms because D-2 also exhibits organic semiconductor-like properties. D-2/AP and D-12/AP can also be used to successfully laser ignite other common energetic materials. This study can guide the development of advanced metal-free laser-ignitable energetic composites to address challenges in the field of aerospace engineering.
RESUMEN
Solar water purification technology is one of the most potent methods to obtain freshwater due to its low cost and non-polluting characteristics. However, the purification efficiency is limited by the high ion concentration, organic pollution, and biological pollution during the actual water purification process. Here, we report a porous hydrogel membrane (Fe/TA-TPAM) for the purification of high ion concentration and contaminated water. The hydrogel membrane exhibits good light absorption and photothermal conversion ability, which shows high evaporation rates (1.4 kg m-2 h-1) and high solar efficiency for seawater. Furthermore, with the introduction of tannic acid (TA) and Ti3C2 MXenes, the Fe/TA-TPAM hydrogel membrane exhibits satisfied purification properties for organic-contaminated and biologically contaminated water. The excellent purification effect of Fe/TA-TPAM under light not only confirms the rationality of the hydrogel porous design and in situ generation of photosensitizer in improving the photothermal performance but also provides a novel strategy for designing advanced photothermal conversion membranes for water purification.
RESUMEN
Bladder cancer, one of the most prevalent malignant cancers, has high rate of recurrence and metastasis. Owing to genomic instability and high-level heterogeneity of bladder cancer, chemotherapy and immunotherapy drugs sensitivity and lack of prognostic markers, the prognosis of bladder cancer is unclear. Necroptosis is a programmed modality of necrotic cell death in a caspase-independent form. Despite the fact that necroptosis plays a critical role in tumor growth, cancer metastasis, and cancer patient prognosis, necroptosis-related gene sets have rarely been studied in bladder cancer. As a result, the development of new necroptosis-related prognostic indicators for bladder cancer patients is critical. Herein, we assessed the necroptosis landscape of bladder cancer patients from The Cancer Genome Atlas database and classified them into two unique necroptosis-related patterns, using the consensus clustering. Then, using five prognosis-related genes, we constructed a prognostic model (risk score), which contained 5 genes (ANXA1, DOK7, FKBP10, MAP1B and SPOCD1). And a nomogram model was also developed to offer the clinic with a more useful prognostic indicator. We found that risk score was significantly associated with clinicopathological characteristics, TIME, and tumor mutation burden in patients with bladder cancer. Moreover, risk score was a valid guide for immunotherapy, chemotherapy, and targeted drugs. In our study, DOK7 was chosen to further verify our prognosis model, and functional assays indicated that knockdown the expression of DOK7 could prompt bladder cancer proliferation and migration. Our work demonstrated the potential role of prognostic model based on necroptosis genes in the prognosis, immune landscape and response efficacy of immunotherapy of bladder cancer.
Asunto(s)
Necroptosis , Neoplasias de la Vejiga Urinaria , Humanos , Pronóstico , Necroptosis/genética , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/terapia , Inmunoterapia , NomogramasRESUMEN
The mineralization of organic components releases CO2 during composting, which not only leads to the loss of organic carbon, but has a direct negative impact on the environment. Malonic acid as a competitive inhibitor of succinate dehydrogenase could affect the tricarboxylic acid (TCA) cycle and reduce CO2 emissions. However, the bacterial interaction and organic component transformation has less known how to malonic acid reduce CO2 and improve of humus synthesis in complex composting. The aim of this study was to investigated the malonic acid on organic carbon sequestration and transforming cow manure waste into products with high humus content. Humus content was elevated by 16.8% and cumulative CO2 emissions (30 d)d reduced by 13.6% after malonic acid addition compared to the CK. SparCC analysis of bacterial interaction presented that the network complexity and stability was more higher with malonic acid addition, while a greater concentration of keystones and their ecological metabolic functions was observed, suggesting they weaken the influence of TCA cycle inhibition by enhancing interactions. PICRUSt predictions indicate that malonic acid might enhance humus content by promoting the synthesis of polyphenols and polymerization with amino acids. This study investigated the potential mechanism of regulators to enhance quality and reduce emissions during humification process, providing a new strategy for the resource utilization of organic solid waste.
Asunto(s)
Compostaje , Animales , Femenino , Bovinos , Dióxido de Carbono , Estiércol , SueloRESUMEN
Limonoids are considered the effective part in Meliaceae plants that exert anti-inflammatory effects. Gedunin-type limonoids specifically have anti-inflammatory effects. However, the role of gedunin-type limonoids in the inflammatory diseases mediated by NLRP3 inflammasome remains to be explored. We found that deacetylgudunin (DAG), a gedunin-type limonoid from Toona sinensis, had similar anti-inflammatory effects and lower toxicity than gedunin. Further studies showed that DAG down-regulated the NF-κB pathway, inhibited K+ efflux and ROS release, inhibited ASC oligomerization, and significantly weakened the interaction of NLRP3 with ASC and NEK7. Furthermore, DAG could not further inhibit IL-1ß secretion and K+ efflux when combined with the P2X7 inhibitor A438079. In conclusion, our research revealed that DAG exerted an anti-inflammatory effect by inhibiting the P2X7/NLRP3 signaling pathway and enriched the application of gedunin-type limonoids in inflammatory diseases driven by the NLRP3 inflammasome.
Asunto(s)
Inflamasomas , Limoninas , Antiinflamatorios/farmacología , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Limoninas/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Transducción de Señal , ToonaRESUMEN
A phytochemical investigation on the roots of Hypericum beanii resulted in the isolation of six new polycyclic polyprenylated acylphloroglucinols (PPAPs), hyperberlones A-F, along with fourteen known analogues. The structural characterization of these compounds was carried out by analyzing the HRESIMS data, 1D and 2D NMR spectroscopic data, electronic circular dichroism (ECD) calculations, and gauge-independent atomic orbital (GIAO) NMR calculations. Hyperberlone A (1) was a caged PPAP with a rare tricyclo[4.3.1.03,8]decane carbon skeleton. It was deduced to be biosynthetically generated from hyperbeanol C (8) through key Paternò-Büchi reaction, radical cascade cyclizations, and retro-aldol reaction. Compounds 4, 6, 7, 9, 14, and 16 exhibited significant nitric oxide (NO) production inhibitory effects in lipopolysaccharide (LPS)-induced BV-2 microglial cells with IC50 values of 6.11-25.28 µM. Moreover, compound 4 significantly decreased the expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in LPS-induced BV-2 microglia, as well as the phosphorylation of JNK.
Asunto(s)
Hypericum , Hypericum/química , Lipopolisacáridos/farmacología , Espectroscopía de Resonancia Magnética , Estructura Molecular , Floroglucinol/químicaRESUMEN
BACKGROUND: Bladder cancer (BC) is one of the most common malignancies of the genitourinary system. Animal models offer an important tool to explore tumour initiation, progression, and therapeutic mechanisms. Our aim is to construct an optimized orthotopic BC model which is predictable, reproducible, and convenient. METHODS: The optimized orthotopic BC model was constructed in male C57BL/6 mice utilizing microsyringes to inoculate them with a murine BC cell line (MB49). Anesthetised mice were inoculated with an MB49 cell suspension (10 µL) at approximately 5 × 106/mL. The whole process of modelling was observed and monitored every 3 days for 21 days utilizing HE staining and transabdominal ultrasonography (TUS). RESULTS: In this study, the model showed excellent success rates for tumour formation (96.67%) and metastatic rate (89.66%). Compared to the control group (sham operation), mice in the modelling group had serous cachexia, visible haematuresis and weight loss (all P < 0.05). The lungs, liver, ureter and kidneys were found to have tumour metastasis. Moreover, the average survival time (19.73 ± 1.69 d) of modelling mice was significantly shorter than that of the control mice (P < 0.05), which remained alive. CONCLUSION: Our study established a method using microsyringes to inject murine BC cells into the bladder wall, creating a stable transplantable BC model in mice.
Asunto(s)
Neoplasias de la Vejiga Urinaria , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/patologíaRESUMEN
The sudden outbreak of coronavirus disease 2019 (COVID-19) in early 2020 has dramatically changed people's lives. Some countries have taken mass home quarantine to control the virus. However, the side effects of quarantine have rarely been interrogated by current COVID-19 research. This study thus investigates the effects of online social support on the public's beliefs in overcoming COVID-19 by embracing their cognition and emotion during the epidemic. First, by crawling and content analysis of the messages posted on "Baidu COVID-19 bar", this study identified 5 types of online social support given or received by the public during COVID-19. On this basis, a model explaining the public's beliefs was developed from the perspectives of online social support, cognition and emotion. 334 valid online questionnaires were collected to examine the proposed model and hypotheses. The results show that cognition has a direct effect on the belief, while emotion affects the belief via a full mediating effect of cognition. Tangible support and esteem support can directly affect the public's beliefs, and educational level significantly moderates these effects. In addition, the public's cognition is influenced by informational support, however, emotion is not influenced by social support but by other factors (e.g., information disclosure, material supplies and frustration caused by the epidemic). These research results provide a deep insight into how to reduce the negative effects of quarantine, consolidate the theoretical basis of the public's beliefs, and have important practical implications for individuals and the government in dealing with such emergencies.
RESUMEN
Acylphloroglucinol meroterpenoids are adducts of the acylphloroglucinol unit and polyprenylated fragments (terpenoids) with attractive structures and bioactivities. During study of the medicinal molecules of the genus Hypericum, the first example of dimethylated acylphloroglucinol meroterpenoids with pyran-fused 6/6/6 tricyclic skeletons ((+)/(-)-elodeoidols A-F (1-6)), along with three biogenetical homologues (7-9) were isolated from the herbaceous plant of Hypericum elodeoides. Their structures including absolute configurations were then identified by nuclear magnetic resonance (NMR), high resolution electrospray ionization mass spectroscopy (HRESIMS), electronic circular dichroism (ECD) analysis and calculations. The monoterpene moiety of 1-6 were cyclized as two cyclohexanes and fused with a dimethylated acylphloroglucinol unit through an additional ether linkage, which led to an interesting pyran-fused linear or angle type 6/6/6 tricyclic skeleton. Compounds 5, 8 and 9 showed preferable antibacterial activities against three oral bacteria, among the MIC value of (+)-5 was 6.25 µg/ml; Compounds 3, 7 and 8 exhibited significant NO inhibitory activity against LPS induced RAW264.7 cells (IC50: 10.39 ± 0.49 ~ 34.25 ± 2.32 µM).
Asunto(s)
Antibacterianos/farmacología , Antiinflamatorios/farmacología , Hypericum/química , Óxido Nítrico/antagonistas & inhibidores , Floroglucinol/farmacología , Terpenos/farmacología , Animales , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Fusobacterium nucleatum/efectos de los fármacos , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Ratones , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Óxido Nítrico/biosíntesis , Floroglucinol/química , Floroglucinol/aislamiento & purificación , Células RAW 264.7 , Streptococcus mutans/efectos de los fármacos , Streptococcus sanguis/efectos de los fármacos , Relación Estructura-Actividad , Terpenos/química , Terpenos/aislamiento & purificaciónRESUMEN
Anisotropic hydrogels with a hierarchical structure can mimic biological tissues, such as neurons or muscles that show directional functions, which are important factors for signal transduction and cell guidance. Here, we report a mussel-inspired approach to fabricate an anisotropic hydrogel based on a conductive ferrofluid. First, polydopamine (PDA) was used to mediate the formation of PDA-chelated carbon nanotube-Fe3O4 (PFeCNT) nanohybrids and also used as a dispersion medium to stabilize the nanohybrids to form a conductive ferrofluid. The ferrofluid can respond to an orientated magnetic field and be programed to form aligned structures, which were then frozen in a hydrogel network formed via in situ free-radical polymerization and gelation. The resulted hydrogel shows directional conductive and mechanical properties, mimicking an oriented biological tissue. Under external electrical stimulation, the orientated PFeCNT nanohybrids can be sensed by the myoblasts cultured on the hydrogel, resulting in the oriented growth of cells. In summary, the mussel-inspired anisotropic hydrogel with its aligned structural complexity and anisotropic properties together with the cell affinity and tissue adhesiveness is a potent multifunctional biomaterial for mimicking oriented tissues to guide cell proliferation and tissue regeneration.
Asunto(s)
Bivalvos , Óxido Ferrosoférrico , Hidrogeles , Campos Magnéticos , Mioblastos/metabolismo , Nanocompuestos/química , Animales , Anisotropía , Línea Celular , Conductividad Eléctrica , Óxido Ferrosoférrico/química , Óxido Ferrosoférrico/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Ratones , Mioblastos/citologíaRESUMEN
1. Cytochrome P450 3A4 (CYP3A4) is an important member of the cytochrome P450 enzyme superfamily, with 33 allelic variants reported previously. Genetic polymorphisms of CYP3A4 can produce a significant effect on the efficacy and safety of some drugs, so the purpose of this study was to clarify the catalytic characteristics of 22 CYP3A4 allelic isoforms, including 6 novel variants in Han Chinese population, on the oxidative metabolism of amiodarone in vitro. 2. Wild-type CYP3A4*1 and other variants expressed by insect cells system were incubated respectively with 10-500 µM substrate for 40 min at 37 °C and terminated at -80 °C immediately. Then these samples were treated as required and detected with ultra-performance liquid chromatography-tandem mass spectrometry used to analyze its major metabolite desethylamiodarone. 3. Among the 21 CYP3A4 variants, compared with the wild-type, the intrinsic clearance values (Vmax/Km) of two variants were apparently decreased (11.07 and 2.67% relative clearance) while twelve variants revealed markedly increased values (155.20â¼435.96%), and the remaining of seven variants exhibited no significant changes in enzyme activity. 4. This is the first time report describing all these infrequent alleles for amiodarone metabolism, which can provide fundamental data for further clinical studies on CYP3A4 alleles.
Asunto(s)
Amiodarona/metabolismo , Inhibidores del Citocromo P-450 CYP3A/metabolismo , Pueblo Asiatico , Citocromo P-450 CYP3A/metabolismo , Humanos , Polimorfismo GenéticoRESUMEN
Sustainable elastomers derived from renewable biobased resources with excellent mechanical properties and varied functions are highly pursued to substitute traditional petroleum-based polymers yet challenging due to their limited macroscopic performance. In this work, we designed a series of wholly biobased cellulose-graft-poly(vanillin acrylate-co-tetrahydrofurfuryl acrylate) (Cell-g-P(VA-co-THFA) copolymer elastomers with cellulose as the rigid backbone, sustainable VA derived from lignin and soft THFA derived from hemicellulose as the hard and soft segments in the rubbery side chains. Moreover, the grafted side chains can be cross-linked to introduce an additional dynamic network structure via Schiff-base chemistry between the aldehyde and amino groups. The mechanical properties of Cell-g-P(VA-co-THFA) copolymer elastomers, including tensile strength, extensibility, elasticity, and toughness can be facilely manipulated by the VA/THFA feed ratio, cellulose content, and cross-linking density. These Cell-g-P(VA-co-THFA) copolymer elastomers are thermally stable and possess outstanding adhesion behavior and prominent UV-shielding performance. Besides dramatically enhanced mechanical properties, the cross-linked Cell-g-P(VA-co-THFA) counterparts exhibit remarkable shape memory behavior. This work provides a robust and convenient strategy for developing strong and versatile sustainable elastomers with different application demands by integrating different biomass feedstocks via elaborate molecular design.
RESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: The active ingredients of traditional Chinese medicine (TCM), such as naringin (NG), Eucommiol, isopsoralen, icariin, Astragalus polysaccharides, and chondroitin sulfate, contained in Drynariae Rhizoma, Eucommiae Cortex, Psoralea corylifolia, Herba Epimedii, Astragalus radix and deer antler, are considered promising candidates for enhancing the healing of osteoporotic defects due to their outstanding bone homeostasis regulating properties. They are commonly used to activate bone repair scaffolds. AIM OF THE REVIEW: Bone repair scaffolds are inadequate to meet the demands of osteoporotic defect healing due to the lack of regulation of bone homeostasis. Therefore, selecting bone scaffolds activated with TCM to improve the therapeutic effect of repairing osteoporotic bone defects. MATERIALS AND METHODS: To gather information on bone scaffold activated by traditional Chinese medicine, we conducted a thorough search of several scientific databases, including Google Scholar, Web of Science, Scifinder, Baidu Scholar, PubMed, and China National Knowledge Infrastructure (CNKI). RESULTS: This review discusses the mechanism of TCM active ingredients in regulating bone homeostasis, including stimulating bone formation and inhibiting bone resorption process and the healing mechanism of traditional bone repair scaffolds activated by them for osteoporotic defect healing. CONCLUSION: In general, the introduction of TCM active ingredients provides a novel therapeutic approach for modulating bone homeostasis and facilitating osteoporotic defect healing, and also offers a new strategy for design of other unconventional bone defect healing materials.
Asunto(s)
Regeneración Ósea , Medicamentos Herbarios Chinos , Homeostasis , Medicina Tradicional China , Osteoporosis , Andamios del Tejido , Osteoporosis/tratamiento farmacológico , Regeneración Ósea/efectos de los fármacos , Animales , Humanos , Medicina Tradicional China/métodos , Homeostasis/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Huesos/efectos de los fármacos , Huesos/metabolismoRESUMEN
The power transformer is the core equipment of the power system, a sudden failure of which will seriously endanger the safety of the power system. In recent years, artificial intelligence techniques have been applied to the dissolved gas analysis evaluation of power transformers to improve the accuracy and efficiency of power transformer fault diagnosis. However, most of the artificial intelligence techniques are data-driven algorithms whose performance decreases when the data are limited or significantly imbalanced. In this paper, we propose an active learning framework for power transformer dissolved gas analysis, in which the model can be dynamically trained based on the characteristics of the data and the training process. In addition, this paper also improves the original active learning spatial search strategy and uses the product of sample feature differences instead of the original sum of differences as a measure of sample difference. Compared to passive learning algorithms, the novel approach could significantly reduce the data labeling effort while improving prediction accuracy.
RESUMEN
NLRP3 inflammasome plays an important role in autoimmunity and the dysregulation of NLRP3 inflammasome can lead to various human diseases. Natural products are an important source for the discovery of safe and effective inflammatory inhibitors. Chloranthalactone B (CTB), a lindenane sesquiterpenoid (LS) from a common traditional Chinese medicine (TCM) (Sarcandra glabra), could significantly inhibit the level of IL-1ß. This study aims to investigate the anti-inflammatory mechanism and target of CTB and its therapeutic effects on inflammatory diseases. CTB significantly inhibited IL-1ß secretion induced by different agonists. Co-IP and flow cytometry results showed that CTB inhibited NLRP3-NEK7 interactions, but had no significant effect on upstream events. Pull-down, DARTS, CETSA, biolayer interferometry assay (BLI), and LC/MS/MS results showed that CTB could covalently bind to cysteine 279 (Cys279) in the NACHT domain of NLRP3. The result of the chemical modification indicated that the epoxide motif was the key group of CTB for its anti-inflammatory effect of CTB. Further animal studies showed that CTB significantly reduced the symptoms and inflammation levels of gout, peritonitis, and acute lung injury. However, the protective effect of CTB against peritonitis and gout was abolished in NLRP3-knocked out (NLRP3 KO) mice. Overall, our research revealed that CTB was a specific NLRP3 covalent inhibitor, and epoxide motif was an active pharmacophore that covalently binds to NLRP3, which provided new insights in designing new NLRP3 inhibitors for treating NLRP3-driven diseases.
Asunto(s)
Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Humanos , Masculino , Ratones , Antiinflamatorios/farmacología , Antiinflamatorios/química , Células HEK293 , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Lactonas/farmacología , Lactonas/química , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Sesquiterpenos/farmacología , Sesquiterpenos/químicaRESUMEN
The adsorption of per- and polyfluoroalkyl substances (PFAS), such as perfluorooctane sulfonate (PFOS), is currently a critical issue in the environmental domain, yet it is not fully understood. Diamane, as a stable monolayer adsorbent, has garnered significant research interest. Defects and strain are reported to play a crucial role in regulating its electronic structure. In this study, we employ density functional theory (DFT) calculations to investigate the adsorption of PFOS on both pristine and nitrogen-vacancy (N-V) defected diamane, respectively. Additionally, we systematically examine the effects of strain in diamane along both the a- and b-directions (two directions of a monolayer) on PFOS adsorption. This analysis involves studying the adsorption energy (Eads), electron transfer, and the partial density of states. Finally, we propose the synergistic effects of N-V defects and compression strain in diamane, which enhance PFOS adsorption. Diamane is considered a promising candidate for PFOS sensing or capture.
Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Ácidos Alcanesulfónicos/química , Fluorocarburos/química , Adsorción , Teoría Funcional de la DensidadRESUMEN
BACKGROUND: The gene polymorphisms of the CYP2C9, as well as the substrate specificity of the enzyme, result in different clearances for different substrates by CYP2C9 variants. RESEARCH DESIGNAND METHODS: The CYP2C9 wild type and 38 CYP2C9 variants, expressed in insectmicrosomes, were incubated with azilsartan. The resulting metabolite,O-desethyl azilsartan, was determined by HPLC-MS/MS. The enzyme kineticparameters of the 38 variants were calculated and compared with the wild type.Subsequently, we selected CYP2C9*1, *2, and *3 as target proteins for molecular docking with azilsartan to elucidate the mechanisms underlying changes in enzyme function. RESULTS: Compared with CYP2C9*1, three variants (CYP2C9*29, *39, and *49) exhibited markedlyincreased CLint values (from 170%-275%, *p < 0.05), whereas 28 variants exhibited significantly decreased CLint values (from 3-63%,*p < 0.05). The molecular docking results showed that the binding energy of CYP2C9*2 and *3 was lower than that of the wild type. CONCLUSION: Thisassessment revealed the effect of CYP2C9 gene polymorphisms on azilsartan metabolism, establishing a theoretical basis for further in-vivo studies and clinical applications. This study will help expand the database of CYP2C9 gene-drug pairs and identify appropriate treatment strategies for azilsartan, contributing to the field of precision medicine.
RESUMEN
The Qinghai-Tibet Plateau (QTP) holds significance for investigating Earth's surface processes. However, due to rugged terrain, forest canopy, and snow accumulation, open-access Digital Elevation Models (DEMs) exhibit considerable noise, resulting in low accuracy and pronounced data inconsistency. Furthermore, the glacier regions within the QTP undergo substantial changes, necessitating updates. This study employs a fusion of open-access DEMs and high-accuracy photons from the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2). Additionally, snow cover and canopy heights are considered, and an ensemble learning fusion model is presented to harness the complementary information in the multi-sensor elevation observations. This innovative approach results in the creation of HQTP30, the most accurate representation of the 2021 QTP terrain. Comparative analysis with high-resolution imagery, UAV-derived DEMs, control points, and ICESat-2 highlights the advantages of HQTP30. Notably, in non-glacier regions, HQTP30 achieved a Mean Absolute Error (MAE) of 0.71 m, while in glacier regions, it reduced the MAE by 4.35 m compared to the state-of-the-art Copernicus DEM (COPDEM), demonstrating its versatile applicability.