Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Hazard Mater ; 465: 133098, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38064949

RESUMEN

In mineral-rich areas, eutrophic lakes are at risk of HMs pollution. However, few papers focused on the repair of HMs in eutrophic environment. Our study analyzed multiple forms of HMs, pore structure and microbial responses in the water-sediment system of eutrophic lake treated with biochar, Effective Microorganisms (EMs) or/and microplastics (MPs). As biochar provided an ideal carrier for EMs, the remediation of biochar-supported EMs (BE) achieved the greatest repairment that improved the bacterial indexes and greatly decreased the most HMs in various forms across the water-sediment system, and it also reduced metal mobility, bioavailability and ecological risk. The addition of aged MPs (MP) stimulated the microbial activity and significantly reduced the HMs levels in different forms due to the adsorption of biofilms/EPS adhered on MPs, but it increased metals mobility and ecological risks. The strong adsorption and high mobility of aged MPs would increase enrichment of HMs and cause serious ecological hazards. The incorporation of BE and MP (MBE) also greatly reduced the HMs in full forms, which was primarily ascribed to the adsorption of superfluous biofilms/EPS, but it distinctly depressed the microbial activity. The single addition of biochar and EMs resulted in the inability of HMs to be adsorbed due to the preferentially adsorption of dissolved nutrients and the absence of effective carrier, respectively. In the remediation cases, the remarkable removal of HMs was principally accomplished by the adsorption of HMs with molecular weight below 100 kDa, especially 3 kDa ∼100 kDa, which had higher specific surfaces and abundant active matters, resulting in higher adsorption onto biofilms/EPS.


Asunto(s)
Carbón Orgánico , Metales Pesados , Microplásticos , Plásticos , Lagos , Metales Pesados/análisis , Agua
2.
Sci Total Environ ; 923: 171476, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38458471

RESUMEN

DOM (dissolved organic matter) play a crucial role in lakes' geochemical and carbon cycles. Eutrophication evolution would influence nutrient status of waters and investigating the DOM variation helps a better understanding of bioremediation on environmental behavior of DOM in eutrophic lakes. In our study, the contents, compositions and characteristics of systematic DOM&SOM (sediment organic matter) were greatly influenced by seasonal changes. But the effective bioremediations obviously reduced the DOM concentration and thus mitigated the eutrophication outbreak risks in water bodies due to the increased MBC (microbial biomass carbon), microbial activity and metabolism. In early summer, the overall DOM in each treatment were readily low levels and derived from both autochthonous and exogenous origins, dominated by fulvic acid-like. In midsummer, the DOM contents and characteristics in each treatment increased significantly as phytoplankton activity improved, and the majority of DOM were humic acid-like and mainly of biological origin. The greatest differences of enzymes, MBC, microbial metabolism and DOM&SOM removal among different treatments were observed in summer months. In autumn, the systematic DOM&SOM slightly reduced due to the deceased microbial activity, in which the microbial humic acids were main component and derived from endogenous sources. Additionally, the gradually decreased SOM with cultivated time in each treatment was a result of microbiological conversion of SOM into DOM. For various treatments, BE, BE.A, BE.C and BE.E increased the MBC, enzymatic and microbial activities due to the application of biochar-supported EMs. Among these, BE and BE.A, especially BE.A with oxygen supplement, achieved the most desirable effect on reducing systematic DOM&SOM levels and increasing enzymatic and microbial activities. The group of EM also reduced the levels of DOM&SOM as improved degradation of EMs for DOM. However, BC, BE.C and BE.E finally did not achieved the desirable effect on reducing DOM&SOM due to the suppression of microbial activities, respectively, from high dose of biochar, weakening of dominant species and additional introduction of EMs in low liveness.


Asunto(s)
Materia Orgánica Disuelta , Lagos , Lagos/química , Estaciones del Año , Carbón Orgánico , Sustancias Húmicas/análisis
3.
J Clin Sleep Med ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652493

RESUMEN

STUDY OBJECTIVES: A growing body of literature suggests that deep brain stimulation (DBS) to treat motor symptoms of Parkinson's disease (PD) may also ameliorate certain sleep deficits. Many foundational studies have examined the impact of stimulation on sleep following several months of therapy, leaving an open question regarding the time course for improvement. It is unknown whether sleep improvement will immediately follow onset of therapy or accrete over a prolonged period of stimulation. The objective of our study was to address this knowledge gap by assessing the impact of DBS on sleep macro-architecture during the first nights of stimulation. METHODS: Polysomnograms were recorded for three consecutive nights in 14 patients with advanced PD (10 male, 4 female; age: 53-74 years), with intermittent, unilateral subthalamic nucleus DBS on the final night or two. Sleep scoring was determined manually by a consensus of four experts. Sleep macro-architecture was objectively quantified using the percentage, latency, and mean bout length of wake after sleep onset (WASO) and on each stage of sleep (REM and NREM stages N1, N2, N3). RESULTS: Sleep was found to be highly disrupted in all nights. Sleep architecture on nights without stimulation was consistent with prior results in treatment naive patients with PD. No statistically significant difference was observed due to stimulation. CONCLUSIONS: These objective measures suggest that one night of intermittent subthreshold stimulation appears insufficient to impact sleep macro-architecture. CLINICAL TRIAL REGISTRATION: Name: Adaptive Neurostimulation to Restore Sleep in Parkinson's Disease; URL: https://clinicaltrials.gov/ct2/show/NCT04620551; Identifier: NCT04620551.

4.
ACS Appl Mater Interfaces ; 15(28): 34272-34289, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37415272

RESUMEN

Dye/salt separation in textile wastewater is of great importance. Membrane filtration technology is an environmentally friendly and effective approach to solve this issue. In this study, a thin-film composite membrane with a tannic acid (TA)-modified carboxylic multiwalled carbon nanotube (MWCNT) interlayer (M-TA) was prepared by interfacial polymerization with amino-functionalized graphene quantum dots (NGQDs) acting as aqueous monomers. The addition of the M-TA interlayer favored the formation of a thinner, more hydrophilic, and smoother selective skin layer for the composite membrane. The pure water permeability of the M-TA-NGQDs membrane was ∼9.32 L m-2 h-1 bar-1, which was higher than that of the NGQDs membrane without the interlayer. Meanwhile, the M-TA-NGQDs membrane presented better methyl orange (MO) rejection (97.79%) than the NGQDs membrane (87.51%). The optimal M-TA-NGQDs membrane exhibited excellent dye rejection (Congo red (CR): 99.61%; brilliant green (BG): 96.04%) and low salt rejection (NaCl < 15%). Noticeably, the M-TA-NGQDs membrane displayed effective selective separation performance (CR and BG > 99%) for dye/NaCl mixed solutions even at a high NaCl concentration of 50,000 mg/L. Furthermore, the M-TA-NGQDs membrane presented high water permeability recovery ratio values (91.02-98.20%). Importantly, the M-TA-NGQDs membrane showed excellent chemical stability (acid/alkali resistance). Generally, the fabricated M-TA-NGQDs membrane exhibited a great prospect for applications in dye wastewater treatment and water recycling, especially for the effective selective separation of dye/salt mixtures for high-salinity textile dyeing wastewater.

5.
J Colloid Interface Sci ; 641: 197-214, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36933467

RESUMEN

For better sustainable resource recovery and elevating the separation efficiency of dye/salt mixture, it is essential to develop an appropriate nanofiltration membrane for the treatment of textile dyeing wastewater containing relatively smaller molecule dyes. In this work, a novel composite polyamide-polyester nanofiltration membrane was fabricated by tailoring amino functionalized quantum dots (NGQDs) and ß-cyclodextrin (CD). An in-situ interfacial polymerization occurred between the synthesized NGQDs-CD and trimesoyl chloride (TMC) on the modified multi-carbon nanotubes (MWCNTs) substrate. The incorporation of NGQDs significantly elevated the rejection (increased by âˆ¼ 45.08%) of the resultant membrane for small molecular dye (Methyl orange, MO) compared to the pristine CD membrane at low pressure (1.5 bar). The newly developed NGQDs-CD-MWCNTs membrane exhibited enhanced water permeability without compromising the dye rejection compared to the pure NGQDs membrane. The improved performance of the membrane was primarily attributed to the synergistic effect of functionalized NGQDs and the special hollow-bowl structure of CD. The optimal NGQDs-CD-MWCNTs-5 membrane expressed pure water permeability of 12.35 L m-2h-1 bar-1 at the pressure of 1.5 bar. Noteworthily, the NGQDs-CD-MWCNTs-5 membrane not only showed high rejection for the larger molecular dye of Congo Red (CR, 99.50%) but also for the smaller molecular dye of MO (96.01%) and Brilliant Green (BG, 95.60%) with the permeability of 8.81, 11.40, and 6.37 L m-2h-1 bar-1, respectively at low pressure (1.5 bar). The rejection of inorganic salts by the NGQDs-CD-MWCNTs-5 membrane was 17.20% for sodium chloride (NaCl), 14.30% for magnesium chloride (MgCl2), 24.63% for magnesium sulfate (MgSO4), and 54.58% for sodium sulfate (Na2SO4), respectively. The great rejection of dyes remained in the dye/salt binary mixed system (higher than 99% for BG and CR, <21% for NaCl). Importantly, the NGQDs-CD-MWCNTs-5 membrane exhibited favorable antifouling performance and potential good operation stability performance. Consequently, the fabricated NGQDs-CD-MWCNTs-5 membrane suggested a prospective application for the reuse of salts and water in textile wastewater treatment owing to the effective selective separation performance.

6.
Sleep Med ; 107: 236-242, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37257366

RESUMEN

OBJECTIVE: Sleep dysregulation in Parkinson's disease (PD) has been hypothesized to occur, in part, from dysfunction in the basal ganglia-cortical circuit. Assessment of this relationship requires accurate sleep stage determination, a known challenge in this clinical population. Our objective was to optimize the consensus on the sleep staging process and reduce interrater variability in a cohort of advanced PD subjects. METHODS: Fifteen PD subjects were enrolled from three sites in a clinical trial that involved recordings from subthalamic nucleus (STN) deep brain stimulation (DBS) leads (NCT04620551). Video polysomnography (vPSG) data for a total of 45 nights were analyzed. Four experienced scorers independently scored data on initial review. Epochs with less than 75% consensus were flagged for secondary review. In secondary review of discordant epochs, two of the original scorers re-assessed epochs, from which the final consensus stage was derived. RESULTS: Sleep stage classification agreement averaged 83.10% across all sleep stages on initial scoring (IS), and on secondary consensus scoring (CS) review, agreement reached 96.58%. Greatest disagreement was noted in determination of awake epochs (33.6% of discordant epochs) and non-rapid-eye-movement stage 2 (N2) epochs (31.8% of discordant epochs). Scoring discrepancy was resolved with direct measurement of cortical frequency and amplitudes, physiologic context of the epoch, and video review. CONCLUSION: Our method of multi-level initial and then secondary consensus review scoring resulted in consensus scoring agreement superior to conventional standards. This work features a custom-engineered vPSG software and review platform for integration of consensus sleep stage scoring in a multi-site clinical trial.


Asunto(s)
Enfermedad de Parkinson , Humanos , Consenso , Variaciones Dependientes del Observador , Enfermedad de Parkinson/complicaciones , Reproducibilidad de los Resultados , Sueño , Fases del Sueño/fisiología
7.
J Hazard Mater ; 430: 128385, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35152103

RESUMEN

The combined eco-risks of Sb (widely presented in soils, especially nearing mining areas) and the engineering nanomaterials (ENMs) (applied in agriculture and soil remediation) still remain uncovered. The current study investigated the impacts of single and combined exposure of CuO, CeO2 nanoparticles (NPs) and multi-walled carbon nanotube (MWCNTs) with Sb on rice growths and rhizosphere bacterial communities. The results showed that co-exposure of CuO NPs (0.075 wt%) with Sb (III) posed the most adverse impacts on root biomass and branches (up to 66.59% and 70.00% compared to other treatments, respectively). Treatments containing MWCNTs showed insignificant dose-dependent effects, while CeO2 NPs combined with Sb (III) showed significant synergistic stimulating effects on the fresh weights of root and shoot, by 68.30% and 73.48% (p < 0.05) compared to single Sb exposure, respectively. The rice planting increased the percentage of non-specifically sorbed Sb in soils by 1.50-14.49 than the no-planting stage. Analysis on microbial communities revealed that co-exposure of CuO NPs with Sb (III) induced the greatest adverse impacts on rhizobacteria abundances and community structures at both phylum and genus levels. Therein, significant decrease of Bacteroidetes, Acidobacteria and increase of Firmicutes abundance at the phylum level were observed. This study provided information about the risks of different ENMs released to Sb-contaminated soils under flooded condition on both crops and bacterial communities.


Asunto(s)
Nanopartículas , Oryza , Contaminantes del Suelo , Antimonio/toxicidad , Suelo/química , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
8.
Chemosphere ; 286(Pt 2): 131777, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34375835

RESUMEN

Plastic discharged into the environment would break down into microplastics (MPs). However, the possible impact of MPs on heavy metals in the aquatic sediment remains unknown. In order to evaluate the potential role of MPs as carriers of coexisting pollutants, the adsorption capacity of lead ions from sediment onto aged degradable and conventional MPs were investigated as a function of lead ions concentration, contact time, temperature, MPs dosage, aging time, and fulvic acid concentration. MPs were exposed to UV to obtain aged polyethylene (A-PE) and aged polylactic acid (A-PLA). The aging treatment increased the oxygen content, specific surface area and hydrophilicity of MPs. The adsorption capacity of A-PE for Pb(II) in sediment increased from 10.1525 to 10.4642 mg g-1 with the increasing aging time. However, the adsorption capacity of A-PLA for Pb(II) in sediment decreased from 9.3199 to 8.7231 mg g-1 with the increasing aging time. The adsorption capacity of MPs in sediment for Pb(II) was in the following order: A-PE > PLA > PE > A-PLA. Fulvic acid could promote the adsorption of Pb(II) by MPs in sediment. These results indicated that the aging process of the plastics in the environment would affect its role as a carrier of coexisting pollutants.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Adsorción , Plomo , Plásticos , Contaminantes Químicos del Agua/análisis
9.
Environ Sci Pollut Res Int ; 28(35): 49289-49301, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33934310

RESUMEN

Biochar and compost were two common amendments for the polluted soil. However, few studies were conducted to study the sorption of organic pollutants on combined biochar-compost and the relative adsorption mechanisms in mixed soil. The work had studied the adsorption and desorption behaviors of sulfamethoxazole (SMX) onto wetland soil after amended with biochar and/or compost. Moreover, the physicochemical and morphology properties of biochar/compost and amended soils were analyzed to discuss the relative adsorption mechanisms. Studies showed that the adsorption capacity of amended soils increased with the total amount of biochar or/and compost added, which was positively related to SOM, CEC, and EC of amended soils, but had nothing to do with the type of additives. Compared with the compost-treated treatments, the biochar-treated treatments generally achieved lower desorption rates, which also had demonstrated both different adsorption mechanisms. Pore filling and hydrophobic partitioning were the main adsorption mechanisms for biochar and compost, respectively. Though biochar owned developed pore structure, however, pore-filling of biochar was overwhelmingly weakened due to pore-blocking in mixed soils. Hence, in soil environment, compost is a kind of a more desirable amendment than biochar in absorbing and degrading organic pollutants.


Asunto(s)
Compostaje , Contaminantes del Suelo , Adsorción , Carbón Orgánico , Suelo , Contaminantes del Suelo/análisis , Sulfametoxazol , Humedales
10.
J Hazard Mater ; 385: 121533, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31757720

RESUMEN

Biochar and compost, two common amendments, were rarely conducted to investigate their combined influence on enzymatic activities and microbial communities in organic-polluted wetlands. This article described the effects of biochar/compost on degradation efficiency of sulfamethoxazole (SMX) and ecosystem responses in polluted wetland soil during the whole remediation process. 1% biochar (SB1) increased degradation efficiency of SMX by 0.067% ascribed to the increase of dehydrogenase and urease. 5% biochar (SB5) decreased degradation efficiency by 0.206% due to the decrease of enzymes especially for dehydrogenase. 2% compost (SC2), 1% biochar & 2% compost (SBC3), both 10% compost (SC10) and 5% biochar & 10% compost (SBC15) enhanced degradation efficiency by 0.033%, 0.015% and 0.222%, respectively, due to the increase of enzymes and biomass. The degradation efficiency was positively related to biomass and enzymatic activities. High-throughput sequencing demonstrated that HCGs (SB5, SC10, SBC15) improved the bacterial diversities but reduced richness through introducing more exogenous predominance strains and annihilated several inferior strains, while LCGs (SB1, SC2, SBC3) exhibited lower diversities but higher richness through enhanced the RAs of autochthonal preponderant species and maintained some inferior species. Additionally, HCGs raised the RAs of amino and lipid metabolism gene but lowered those of carbohydrate compared with LCGs.


Asunto(s)
Bacterias/metabolismo , Carbón Orgánico/química , Compostaje , Contaminantes del Suelo/metabolismo , Suelo/química , Sulfametoxazol/metabolismo , Biodegradación Ambiental , Microbiota/efectos de los fármacos , Oxidorreductasas/metabolismo , Microbiología del Suelo , Ureasa/metabolismo , Humedales
11.
Environ Pollut ; 267: 115594, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33254729

RESUMEN

With the most active Sb mines, the "dominance" on Sb production of China lead to increasingly release and omnipresence of Sb in environment through mining activities as well as the life cycle of Sb-containing productions. The introduction of engineered nanoparticles (ENPs) accidentally or intentionally (such as NP-containing sludge as fertilizer) might increase the probability of co-exposed with Sb to plants. In this study, CeO2 NPs, one of the most widely used nanomaterials in industries with potential oxidizing or reducing properties, was selected and co-exposed with Sb (III) or Sb (V) to investigate their mutual effects on uptake, accumulation and physiological effects in soybeans. The results showed that CeO2 NPs increased the Sb (III) and Sb (V) concentrations in roots by 36.7% and 14.0% respectively, while Sb (III) and Sb (V) inhibited the concentration of Ce in roots by 97.1% and 86.9% respectively. In addition, the impacts of extra common ions (Mn2+, Cu2+, Fe3+ and Zn2+) on the fate of Ce and Sb in soybeans in co-exposure of CeO2 NPs with Sb were investigated as well. Mn2+ and Fe3+ increased the accumulations of Ce and Sb (III) in the co-exposure of CeO2 NPs with Sb (III), but reduced that in the co-exposure of CeO2 NPs with Sb (V). Notably, the addition of Cu2+ and Zn2+ consistently increased the uptake and accumulation of Ce and Sb in the co-exposure treatments. Moreover, the effects of Sb on the dissolved portion of CeO2 NPs in soybean roots were also investigated. This study provided a perspective that extra ingredient (mineral elements, organic element or other nutrients) might regulated the interactions in ENPs-heavy metals-plants system which need further explorations.


Asunto(s)
Cerio , Fabaceae , Nanopartículas del Metal , Nanopartículas , Transporte Biológico , China , Iones , Glycine max
12.
J Environ Radioact ; 218: 106254, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32421586

RESUMEN

Citric acid (CA) and Lactic acid (LA) were used as additives to study the mechanism of organic acid promoting the root-to-shoot translocation of uranium (U) in Brassica juncea var. foliosa from molecular and tissue levels. Firstly, the distribution of U in plants under the condition of different organic acids concentrations were studied. The accumulation of U in leafs of 1 mM CA group and 5 mM LA group reached 2225 and 1848 mg/kg respectively, which was about 5 times that of the control group. Secondly, the speciation and distribution of U in plant roots after exposure to different culture solutions were studied by EXAFS and SEM. The result of EXAFS found that the complex of U with organic acids resulted in the U accumulated in the roots was the uranyl carboxylate speciation, while the control group only was the uranyl phosphate speciation. SEM results showed that the lactic acids could enhanced the translocation of U from the cortex to the stele. Thirdly, we further studied the apoplastic pathway and the symplastic pathway of U translocation using transpiration inhibitor and metabolism inhibitor. Compared with the control group, it was likely that the complex of U with organic acids were translocated into the shoot of plants through the apoplastic pathway.


Asunto(s)
Planta de la Mostaza , Monitoreo de Radiación , Uranio , Hojas de la Planta , Raíces de Plantas
13.
Environ Pollut ; 253: 221-230, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31310872

RESUMEN

There is a need to develop highly efficient materials for capturing uranium from nuclear wastewater. Here, 5-methylbenzotriazole modified graphene oxide (MBTA-GO) was used to adsorb U(VI) from aqueous solution. By the trials of different conditions, we found that the removal of U(VI) from acidic solution was strongly dependent on pH but independent of ionic strength. The U(VI) adsorption was perfectly conformed to the pseudo-second-order kinetics and the adsorption isotherms were simulated by the Langmuir model well. A high removal capacity (qmax = 264 mg/g) for U(VI) at pH 3.5 was obtained. XPS, EXAFS analyses and DFT calculations revealed that the mechanism of uranium capture was ascribed to (i) the surface complexation by benzotriazole and carboxyl groups (providing lone pair electrons) on MBTA-GO and (ii) enhanced synergistic coordination ability of delocalized π-bond of triazole group toward U due to the transfer of electrons from graphene sheet to benzotriazole. DFT calculations further demonstrated that benzotriazole displayed stronger binding with U(VI) compared to carboxyl group due to higher binding energy of [Side/Surface-U-MBTA-GO] (79.745, 54.986 kcal/mol) than [MBTA-GO-COOH-U] (27.131 kcal/mol). This work will provide valuable insight into designing novel nitrogen-containing adsorbents for practical application in wastewater treatment.


Asunto(s)
Grafito/química , Triazoles/química , Uranio/química , Contaminantes Radiactivos del Agua/química , Adsorción , Cinética , Concentración Osmolar , Óxidos/química , Eliminación de Residuos Líquidos/métodos , Aguas Residuales , Agua
14.
Environ Sci Pollut Res Int ; 24(3): 2996-3005, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27848132

RESUMEN

Variant Sedum alfredii Hance (V S. alfredii) could simultaneously take up U and Th from water with the highest concentrations recorded as 1.84 × 104 and 6.72 × 103 mg/kg in the roots, respectively. Th stimulated U uptake by V S. alfredii roots at Th10 (10 µM of Th), however, the opposite was observed at Th100 (100 µM of Th). A similar result was found in the effect of U on the uptake of Th by V S. alfredii. Subcellular fractionation studies of V S. alfredii indicated that U and Th were mainly stored in cell wall fraction, and much less was found in organelle and soluble fractions. Chemical form examination results showed that water-soluble U and Th were the predominant chemical forms in this plant. Addition of the other radionuclide in aqueous solutions altered the concentration and percentage of U or Th in cell wall fraction and in water-soluble form, resulting in the change of the uptake capacity of U or Th by V S. alfredii roots. Comparing with single U or Th treatment, the plant cells revealed more swollen chloroplasts and enhanced thickening in cell walls under the U100 + Th100 treatment, as observed by TEM. Those results collectively displayed that V S. alfredii may be utilized as a potential plant to simultaneously remove U and Th from aqueous solutions (rhizofiltration).


Asunto(s)
Biodegradación Ambiental , Sedum , Torio , Uranio , Contaminantes Ambientales , Raíces de Plantas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA