Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Vet Res ; 55(1): 86, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970119

RESUMEN

H7N9 subtype avian influenza viruses (AIVs) cause 1567 human infections and have high mortality, posing a significant threat to public health. Previously, we reported that two avian-derived H7N9 isolates (A/chicken/Eastern China/JTC4/2013 and A/chicken/Eastern China/JTC11/2013) exhibit different pathogenicities in mice. To understand the genetic basis for the differences in virulence, we constructed a series of mutant viruses based on reverse genetics. We found that the PB2-E627K mutation alone was not sufficient to increase the virulence of H7N9 in mice, despite its ability to enhance polymerase activity in mammalian cells. However, combinations with PB1-V719M and/or PA-N444D mutations significantly enhanced H7N9 virulence. Additionally, these combined mutations augmented polymerase activity, thereby intensifying virus replication, inflammatory cytokine expression, and lung injury, ultimately increasing pathogenicity in mice. Overall, this study revealed that virulence in H7N9 is a polygenic trait and identified novel virulence-related residues (PB2-627K combined with PB1-719M and/or PA-444D) in viral ribonucleoprotein (vRNP) complexes. These findings provide new insights into the molecular mechanisms underlying AIV pathogenesis in mammals, with implications for pandemic preparedness and intervention strategies.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A , Mutación , Infecciones por Orthomyxoviridae , Proteínas Virales , Animales , Ratones , Subtipo H7N9 del Virus de la Influenza A/genética , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Subtipo H7N9 del Virus de la Influenza A/fisiología , Infecciones por Orthomyxoviridae/virología , Infecciones por Orthomyxoviridae/veterinaria , Virulencia , Femenino , Proteínas Virales/genética , Proteínas Virales/metabolismo , Ratones Endogámicos BALB C , Replicación Viral
2.
Virology ; 589: 109926, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37952465

RESUMEN

H9N2 subtype avian influenza virus (AIV) can transmit by direct as well as airborne contacts. It has been widespread in poultry and continued to contribute to zoonotic spillover events by providing its six internal genes for the reassortment of novel influenza viruses (eg, H7N9) that infect poultry and humans. Compared to H7N9, H9N2 virus displays an efficient airborne transmissibility in poultry, but the mechanisms of transmission difference have been insufficiently studied. The Hemagglutinin (HA) and viral polymerase acidic protein (PA) have been implicated in the airborne transmission of influenza A viruses. Accordingly, we generated the reassortant viruses of circulating airborne transmissible H9N2 and non-airborne transmissible H7N9 viruses carrying HA and/or PA gene. The introduction of the PA gene from H7N9 into the genome of H9N2 virus resulted in a reduction in airborne transmission among chickens, while the isolated introduction of the HA gene segment completely eliminated airborne transmission among chickens. We further showed that introduction of HA gene of non-transmissible H7N9 did not influence the HA/NA balance of H9N2 virus, but increased the threshold for membrane fusion and decreased the acid stability. Thus, our results indicate that HA protein plays a key role in replication, stability, and airborne transmission of the H9N2 subtype AIV.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A , Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Gripe Humana , Humanos , Animales , Pollos , Hemaglutininas , Subtipo H7N9 del Virus de la Influenza A/genética , Aerosoles y Gotitas Respiratorias , Aves de Corral , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virus Reordenados/genética , Virus Reordenados/metabolismo , Filogenia
3.
Vet Microbiol ; 287: 109910, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38016409

RESUMEN

Low pathogenic (LP) H7N9 avian influenza virus (AIV) emerged in 2013 and had spread widely over several months in China, experienced a noteworthy reduction in isolation rate in poultry and human since 2017. Here, we examined the transmission of H7N9 viruses to better understand viral spread and dissemination mechanisms. Three out of four viruses (2013-2016) could transmit in chickens through direct contact, and airborne transmission was confirmed in the JT157 (2016) virus. However, we did not detect the transmission of the two 2017 viruses, WF69 and AH395, through either direct or airborne exposure. Molecular analysis of genome sequence of two viruses identified eleven mutations located in viral proteins (except for matrix protein), such as PA (K362R and S364N) and HA (D167N, H7 numbering), etc. We explored the genetic determinants that contributed to the difference in transmissibility of the viruses in chickens by generating a series of reassortants in the JT157 background. We found that the replacement of HA gene in JT157 by that of WF69 abrogated the airborne transmission in recipient chickens, whereas the combination of HA and PA replacement led to the loss of airborne and direct contact transmission. Failure with contact transmission of the viruses has been associated with the emergence of the mutations D167N in HA and K362R and S364N in PA. Furthermore, the HA D167N mutation significantly reduced viral attachment to chicken lung and trachea tissues, while mutations K362R and S364N in PA reduced the nuclear transport efficiency and the PA protein expression levels in both cytoplasm and nucleus of CEF cells. The D167N substitution in HA reduced the H7N9 viral acid stability and avian-like receptor binding, while enhanced human-like receptor binding. Further analysis revealed these mutants grew poorly in vitro and in vivo. To conclude, H7N9 AIVs that contain mutations in the HA and PA protein reduced the viral transmissibility in chicken, and may pose a reduced threat for poultry but remain a heightened public health risk.


Asunto(s)
Hemaglutininas , Subtipo H7N9 del Virus de la Influenza A , Gripe Aviar , Gripe Humana , Animales , Humanos , Pollos , Subtipo H7N9 del Virus de la Influenza A/genética , Mutación , Aves de Corral , Hemaglutininas/genética , ARN Polimerasa Dependiente del ARN/genética , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA