Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMJ Open ; 12(4): e053691, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35477886

RESUMEN

OBJECTIVES: Platelet count is an independent predictor of mortality in patients with cancer. It remains unknown whether the platelet count is related to in-hospital mortality in severely ill patients with tumours. DESIGN: A retrospective study based on a dataset from a multicentre cohort. SETTING: This was a secondary analysis of data from one Electronic Intensive Care Unit Collaborative Research Database survey cycle (2014-2015). PARTICIPANTS: The data pertaining to severely ill patients with tumours were collected from 208 hospitals located across the USA. This study initially a total of 200 859 participants. After the population was limited to patients with combined tumours and platelet deficiencies, the remaining 2628 people were included in the final data analysis. PRIMARY AND SECONDARY OUTCOME MEASURES: The main measure was the platelet count, and the main outcome was in-hospital mortality. RESULTS: After adjustment for the covariates, the platelet count had a curvilinear relationship with in-hospital mortality (p<0.001). The first inflection point was 18.4 (per 10 change). On the left side of the first inflection point (platelet count ≤184 'x10ˆ9/L), an increase of 10 in the platelet count was negatively associated with in-hospital mortality (OR 0.92, 95% CI 0.89 to 0.95, p<0.001). The second inflection point was 44.5 (per 10 change). Additional increases of 10 in the platelet count thereafter were positively associated with hospital mortality (OR 1.13, 95% CI 1.00 to 1.28, p=0.0454). The baseline platelet count was in the range of 184 'x10ˆ9/L-445 'x10ˆ9/L(p=0.0525), and the hospital mortality was lower than the baseline platelet count in other ranges. CONCLUSIONS: The relationship between platelet count and in-hospital mortality in critically ill patients with tumours was curvilinear. The lowest in-hospital mortality was associated with platelet count between 184 'x10ˆ9/Land 445 'x10ˆ9/L. This indicates that both high and low platelet count should receive attention in clinical practice.


Asunto(s)
Plaquetas , Neoplasias , Estudios de Cohortes , Enfermedad Crítica , Mortalidad Hospitalaria , Humanos , Estudios Retrospectivos
2.
Chronobiol Int ; 39(10): 1340-1351, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35903031

RESUMEN

BMAL1 is a core circadian clock gene that is expressed rhythmically in a variety of tumor cells and is related to cancer cell proliferation and chemoradiotherapy sensitivity. Radiotherapy plays an important role in the treatment of nasopharyngeal carcinoma (NPC). However, the rhythmicity of BMAL1 in NPC, as well as its precise role in radiotherapy, remains unclear. We assessed changes in BMAL1 expression over 48 h in NPC cells and normal nasopharyngeal epithelial cells NP69 using real-time quantitative polymerase chain reaction (RT-PCR) and western blotting (WB). Then, we induced the overexpression and knocked-down the levels of BMAL1 in NPC cells, and subsequently used Cell Counting Kit-8 assays to assess the proliferation of NPC cells. Xenograft tumour growth was used to evaluate the effect of BMAL1 in vivo. Immunohistochemical staining was used to detect the expression of BMAL1 protein in transplanted tumors. Gene Set Enrichment Analysis (GSEA) was performed to explore the biological signaling pathway. Finally, RT-PCR and WB were used to detect the expressions of BMAL1, p53 and p21. The results showed that the mRNA expression levels of circadian clock gene BMAL1 fluctuated rhythmically with time, and the expression levels of BMAL1 also changed depending on the protein levels in NPC and NP69 cells. Overexpression of BMAL1 inhibited the proliferation of NPC cells, while knockdown BMAL1 had the opposite effects. In a xenograft model, we observed that the upregulation of BMAL1 inhibited tumor growth and enhanced the sensitivity of NPC cells to radiotherapy. Ultimately, the downregulation of BMAL1 promoted tumor growth and decreased radiosensitivity. GSEA analysis suggested that BMAL1 significantly affected the p53 pathway. Overexpression of BMAL1 promoted the expression of p53 and p21, while the knockdown of BMAL1 inhibited the expression of p53 and p21. We speculate that BMAL1 has the potential to be a prognostic biomarker and therapeutic target for NPC.


Asunto(s)
Relojes Circadianos , Neoplasias Nasofaríngeas , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Línea Celular Tumoral , Proliferación Celular , Relojes Circadianos/genética , Ritmo Circadiano , Regulación Neoplásica de la Expresión Génica , Humanos , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/radioterapia , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA