Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38231022

RESUMEN

BACKGROUND: Femoral version deformities have recently been identified as a major contributor to femoroacetabular impingement (FAI). An in-depth understanding of the specific labral damage patterns caused by femoral version deformities may help to understand the underlying pathomorphologies in symptomatic patients and select the appropriate surgical treatment. QUESTIONS/PURPOSES: We asked: (1) Is there a correlation between femoral version and the mean cross-sectional area of the acetabular labrum? (2) Is there a difference in the location of lesions of the acetabular labrum between hips with increased femoral version and hips with decreased femoral version? (3) Is there a difference in the pattern of lesions of the acetabular labrum between hips with increased femoral version and hips with decreased femoral version? METHODS: This was a retrospective, comparative study. Between November 2009 and September 2016, we evaluated 640 hips with FAI. We considered patients with complete diagnostic imaging including magnetic resonance arthrography (MRA) of the affected hip with radial slices of the proximal femur and axial imaging of the distal femoral condyles (allowing for calculation of femoral version) as eligible. Based on that, 97% (620 of 640 hips) were eligible; a further 77% (491 of 640 hips) were excluded because they had either normal femoral version (384 hips), incomplete imaging (20 hips), a lateral center-edge angle < 22° (43 hips) or > 39° (16 hips), age > 50 years (8 hips), or a history of pediatric hip disease (20 hips), leaving 20% (129 of 640 hips) of patients with a mean age of 27 ± 9 years for analysis, and 61% (79 of 129 hips) were female. Patients were assigned to either the increased (> 30°) or decreased (< 5°) femoral version group. The labral cross-sectional area was measured on radial MR images in all patients. The location-dependent labral cross-sectional area, presence of labral tears, and labral tear patterns were assessed using the acetabular clockface system and compared among groups. RESULTS: In hips with increased femoral version, the labrum was normal in size (21 ± 6 mm2 [95% confidence interval 20 to 23 mm2]), whereas hips with decreased femoral version showed labral hypotrophy (14 ± 4 mm2 [95% CI 13 to 15 mm2]; p < 0.01). In hips with increased femoral version, labral tears were located more anteriorly (median 1:30 versus 12:00; p < 0.01). Hips with increased femoral version exhibited damage of the anterior labrum with more intrasubstance tears anterosuperiorly (17% [222 of 1322] versus 9% [93 of 1084]; p < 0.01) and partial tears anteroinferiorly (22% [36 of 165] versus 6% [8 of 126]; p < 0.01). Hips with decreased femoral version showed superior labral damage consisting primarily of partial labral tears. CONCLUSION: In the evaluation of patients with FAI, the term "labral tear" is not accurate enough to describe labral pathology. Based on high-quality radial MR images, surgeons should always evaluate the combination of labral tear location and labral tear pattern, because these may provide insight into associated femoral version abnormalities, which can inform appropriate surgical treatment. Future studies should examine symptomatic patients with normal femoral version, as well as an asymptomatic control group, to describe the effect of femoral version on labral morphology across the entire spectrum of pathomorphologies. LEVEL OF EVIDENCE: Level III, prognostic study.

2.
Eur J Orthop Surg Traumatol ; 34(1): 489-497, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37632546

RESUMEN

PURPOSE: The modified Kapandji technique has been proposed for fracture reduction in pediatric displaced distal radius fractures (DDRFs), but evidence is sparse. The purpose of this study was to evaluate our outcomes and complications, critically and systematically, when performing the modified Kapandji technique in pediatric DDRFs. Using this technique since 2011, we asked: (1) What is the quality of fracture reduction using this technique? (2) How stable is fracture alignment with this technique? (3) What are the postoperative complications and complication rates? METHODS: Retrospective observational study of 195 pediatric patients treated with the modified Kapandji technique. Quality of fracture reduction, fixation type (intrafocal, combined, or extrafocal), and coronal/sagittal angulation were recorded at surgery and healing. Perioperative complications were graded. Patients were stratified by fracture (metaphyseal or Salter-Harris) and fixation type, as well as age (≤ 6 years; 6 to 10 years; > 10 years). RESULTS: Fracture reduction was 'good' to 'anatomical' in 85% of patients. 'Anatomical' fracture reduction was less frequent in metaphyseal fractures (21% vs. 51%; p < .001). Mean angulation change was higher in metaphyseal fractures in both the sagittal (p = .011) and coronal (p = .021) planes. Metaphyseal fractures showed a higher mean change in sagittal angulation during fracture healing for the 'intrafocal' group. We observed a 15% overall complication rate with 1% being modified Sink Grade 3. CONCLUSION: The modified Kapandji technique for pediatric DDRFs is a safe and effective treatment option. Metaphyseal fractures that do not involve the physis should be treated with extrafocal or combined wire fixation. Complications that require additional surgical treatment are rare. LEVEL OF EVIDENCE: Level of evidence IV.


Asunto(s)
Fracturas del Radio , Fracturas de la Muñeca , Humanos , Niño , Fracturas del Radio/diagnóstico por imagen , Fracturas del Radio/cirugía , Fracturas del Radio/etiología , Fijación Interna de Fracturas/efectos adversos , Fijación Interna de Fracturas/métodos , Hilos Ortopédicos , Fijación de Fractura/métodos
3.
Eur J Orthop Surg Traumatol ; 34(2): 1121-1130, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37962633

RESUMEN

PURPOSE: It is generally accepted that a radial head fracture (RHF) with more than three parts is not suitable for repair; therefore, most authors suggest straightforward radial head arthroplasty (RHA). With up to 20% risk for reoperation after RHA, improvement in reduction and fixation techniques may represent a valuable alternative before further extending the indications for arthroplasty. To determine the functional results and radiological failure rate after osteosynthesis of multi-fragmentary RHF with more than three articular fragments. We specifically determined (1) the one-year Broberg and Morrey functional elbow score, (2) duration of fracture healing, (3) complication rate, and (4) number of patients converted to RHA. METHODS: This study is a retrospective single-center case series. All patients who underwent primary osteosynthesis for RHF between 2012 and 2019 were included. Nine patients with an average age of 52 years had an average clinical and/or radiological follow-up of 49 months. RESULTS: The preoperative imaging identified nine fractures with four fragments. Three patients underwent osteosynthesis with plates and screws, whereas six patients underwent osteosynthesis with only screws. The mean Broberg and Morrey score was 95 points. Overall, eight of the nine patients had satisfactory results. All patients retained their radial heads and showed radiological fracture healing. Only two patients presented with low-grade complications requiring no further surgery. CONCLUSION: Our study showed that osteosynthesis of RHF with up to four fragments can achieve good functional results with a low complication rate and seems to be a valid alternative to RHA.


Asunto(s)
Articulación del Codo , Fracturas Radiales de Cabeza y Cuello , Fracturas del Radio , Humanos , Persona de Mediana Edad , Reoperación , Estudios Retrospectivos , Resultado del Tratamiento , Radio (Anatomía)/cirugía , Articulación del Codo/diagnóstico por imagen , Articulación del Codo/cirugía , Fracturas del Radio/diagnóstico por imagen , Fracturas del Radio/cirugía , Fracturas del Radio/etiología , Fijación Interna de Fracturas/efectos adversos , Fijación Interna de Fracturas/métodos
4.
Eur Radiol ; 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37982837

RESUMEN

OBJECTIVES: To identify preoperative degenerative features on traction MR arthrography associated with failure after arthroscopic femoroacetabular impingement (FAI) surgery. METHODS: Retrospective study including 102 patients (107 hips) undergoing traction magnetic resonance arthrography (MRA) of the hip at 1.5 T and subsequent hip arthroscopic FAI surgery performed (01/2016 to 02/2020) with complete follow-up. Clinical outcomes were assessed using the International Hip Outcome Tool (iHOT-12) score. Clinical endpoint for failure was defined as an iHOT-12 of < 60 points or conversion to total hip arthroplasty. MR images were assessed by two radiologists for presence of 9 degenerative lesions including osseous, chondrolabral/ligamentum teres lesions. Uni- and multivariate Cox regression analysis was performed to assess the association between MRI findings and failure of FAI surgery. RESULTS: Of the 107 hips, 27 hips (25%) met at least one endpoint at a mean 3.7 ± 0.9 years follow-up. Osteophytic changes of femur or acetabulum (hazard ratio [HR] 2.5-5.0), acetabular cysts (HR 3.4) and extensive cartilage (HR 5.1) and labral damage (HR 5.5) > 2 h on the clockface were univariate risk factors (all p < 0.05) for failure. Three risk factors for failure were identified in multivariate analysis: Acetabular cartilage damage > 2 h on the clockface (HR 3.2, p = 0.01), central femoral osteophyte (HR 3.1, p = 0.02), and femoral cartilage damage with ligamentum teres damage (HR 3.0, p = 0.04). CONCLUSION: Joint damage detected by preoperative traction MRA is associated with failure 4 years following arthroscopic FAI surgery and yields promise in preoperative risk stratification. CLINICAL RELEVANCE STATEMENT: Evaluation of negative predictors on preoperative traction MR arthrography holds the potential to improve risk stratification based on the already present joint degeneration ahead of FAI surgery. KEY POINTS: • Osteophytes, acetabular cysts, and extensive chondrolabral damage are risk factors for failure of FAI surgery. • Extensive acetabular cartilage damage, central femoral osteophytes, and combined femoral cartilage and ligamentum teres damage represent independent negative predictors. • Survival rates following hip arthroscopy progressively decrease with increasing prevalence of these three degenerative findings.

5.
J Pediatr Orthop ; 43(5): 286-293, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36808129

RESUMEN

BACKGROUND: Severe slipped capital femoral epiphysis (SCFE) leads to femoroacetabular impingement and restricted hip motion. We investigated the improvement of impingement-free flexion and internal rotation (IR) in 90 degrees of flexion following a simulated osteochondroplasty, a derotation osteotomy, and a combined flexion-derotation osteotomy in severe SCFE patients using 3D-CT-based collision detection software. METHODS: Preoperative pelvic CT of 18 untreated patients (21 hips) with severe SCFE (slip-angle>60 degrees) was used to generate patient-specific 3D models. The contralateral hips of the 15 patients with unilateral SCFE served as the control group. There were 14 male hips (mean age 13±2 y). No treatment was performed before CT. Specific collision detection software was used for the calculation of impingement-free flexion and IR in 90 degrees of flexion and simulation of osteochondroplasty, derotation osteotomy, and combined flexion-derotation osteotomy. RESULTS: Osteochondroplasty alone improved impingement-free motion but compared with the uninvolved contralateral control group, severe SCFE hips had persistently significantly decreased motion (mean flexion 59±32 degrees vs. 122±9 degrees, P <0.001; mean IR in 90 degrees of flexion -5±14 degrees vs. 36±11 degrees, P <0.001). Similarly, the impingement-free motion was improved after derotation osteotomy, and impingement-free flexion after a 30 degrees derotation was equivalent to the control group (113± 42 degrees vs. 122±9 degrees, P =0.052). However, even after the 30 degrees derotation, the impingement-free IR in 90 degrees of flexion persisted lower (13±15 degrees vs. 36±11 degrees, P <0.001). Following the simulation of flexion-derotation osteotomy, mean impingement-free flexion and IR in 90 degrees of flexion increased for combined correction of 20 degrees (20 degrees flexion and 20 degrees derotation) and 30 degrees (30 degrees flexion and 30 degrees derotation). Although mean flexion was equivalent to the control group for both (20 degrees and 30 degrees) combined correction, the mean IR in 90 degrees of flexion persisted decreased, even after the 30 degrees combined flexion-derotation (22±22 degrees vs. 36 degrees±11, P =0.009). CONCLUSIONS: Simulation of derotation-osteotomy (30 degrees correction) and flexion-derotation-osteotomy (20 degrees correction) normalized hip flexion for severe SCFE patients, but IR in 90 degrees of flexion persisted slightly lower despite significant improvement. Not all SCFE patients had improved hip motion with the performed simulations; therefore, some patients may need a higher degree of correction or combined treatment with osteotomy and cam-resection, although not directly investigated in this study. Patient-specific 3D-models could help individual preoperative planning for severe SCFE patients to normalize the hip motion. LEVEL OF EVIDENCE: III, case-control study.


Asunto(s)
Pinzamiento Femoroacetabular , Epífisis Desprendida de Cabeza Femoral , Humanos , Masculino , Niño , Adolescente , Epífisis Desprendida de Cabeza Femoral/cirugía , Estudios de Casos y Controles , Valores de Referencia , Estudios Retrospectivos , Tomografía Computarizada por Rayos X , Articulación de la Cadera/diagnóstico por imagen , Articulación de la Cadera/cirugía , Pinzamiento Femoroacetabular/diagnóstico por imagen , Pinzamiento Femoroacetabular/cirugía , Rango del Movimiento Articular , Osteotomía
6.
Arch Orthop Trauma Surg ; 143(7): 3945-3956, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36274080

RESUMEN

BACKGROUND: Acetabular retroversion is observed frequently in healed Legg-Calvé-Perthes disease (LCPD). Currently, it is unknown at which stage and with what prevalence retroversion occurs because in non-ossified hips, retroversion cannot be measured with standard radiographic parameters. METHODS: In a retrospective, observational study; we examined pelvic radiographs in children with LCPD the time point of occurrence of acetabular retroversion and calculated predictive factors for retroversion. Between 2004 and 2017, we included 55 children with a mean age of 5.7 ± 2.4 years at diagnosis. The mean radiographic follow-up was 7.0 ± 4.4 years. We used two new radiographic parameters which allow assessment of acetabular version in non-ossified hips: the pelvic width index and the ilioischial angle. They are based on the fact that the pelvic morphology differs depending on the acetabular version. These parameters were compared among the four Waldenström stages and to the contralateral side. Logistic regression analysis was performed to determine predictive factors for acetabular retroversion. RESULTS: Both parameters differed significantly among the stages of Waldenström (p < 0.003 und 0.038, respectively). A more retroverted acetabulum was found in stage II and III (prevalence ranging from 54 to 56%) compared to stage I and IV (prevalence ranging from 23 to 39%). In hips of the contralateral side without LCPD, the prevalence of acetabular retroversion was 0% in all stages for both parameters. Predictive factors for retroversion were younger age at stage II and IV, collapse of the lateral pillar in stage II or a non-dysplastic hip. CONCLUSIONS: This is the first study evaluating acetabular version in children with LCPD from early stage to healing. In the developing hip, LCPD may result in acetabular retroversion and is most prevalent in the fragmentation (stage II) and early healing stage (stage III). Partial correction of acetabular retroversion can occur after healing. This has a potential clinical impact on the timing and type of surgical correction, especially in pelvic osteotomies for correction of acetabular version. LEVEL OF EVIDENCE: Level III, retrospective observational study.


Asunto(s)
Acetábulo , Enfermedad de Legg-Calve-Perthes , Niño , Humanos , Preescolar , Acetábulo/diagnóstico por imagen , Acetábulo/cirugía , Enfermedad de Legg-Calve-Perthes/diagnóstico por imagen , Estudios Retrospectivos , Cadera , Articulación de la Cadera/cirugía
7.
Eur Radiol ; 32(5): 3097-3111, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34842955

RESUMEN

OBJECTIVES: To compare the prevalence of pre- and postoperative osseous deformities and intra-articular lesions in patients with persistent pain following arthroscopic femoroacetabular impingement (FAI) correction and to identify imaging findings associated with progressive cartilage damage. METHODS: Retrospective study evaluating patients with hip pain following arthroscopic FAI correction between 2010 and 2018. Pre- and postoperative imaging studies were analyzed independently by two blinded readers for osseous deformities (cam-deformity, hip dysplasia, acetabular overcoverage, femoral torsion) and intra-articular lesions (chondro-labral damage, capsular lesions). Prevalence of osseous deformities and intra-articular lesions was compared with paired t-tests/McNemar tests for continuous/dichotomous data. Association between imaging findings and progressive cartilage damage was assessed with logistic regression. RESULTS: Forty-six patients (mean age 29 ± 10 years; 30 female) were included. Postoperatively, 74% (34/46) of patients had any osseous deformity including 48% (22/46) acetabular and femoral deformities. Ninety-six percent (44/46) had an intra-articular lesion ranging from 20% (9/46) for femoral to 65% (30/46) for acetabular cartilage lesions. Prevalence of hip dysplasia increased (2 to 20%, p = 0.01) from pre- to postoperatively while prevalence of cam-deformity decreased (83 to 28%, p < 0.001). Progressive cartilage damage was detected in 37% (17/46) of patients and was associated with extensive preoperative cartilage damage > 2 h, i.e., > 60° (OR 7.72; p = 0.02) and an incremental increase in postoperative alpha angles (OR 1.18; p = 0.04). CONCLUSION: Prevalence of osseous deformities secondary to over- or undercorrrection was high. Extensive preoperative cartilage damage and higher postoperative alpha angles increase the risk for progressive degeneration. KEY POINTS: • The majority of patients presented with osseous deformities of the acetabulum or femur (74%) and with intra-articular lesions (96%) on postoperative imaging. • Prevalence of hip dysplasia increased (2 to 20%, p = 0.01) from pre- to postoperatively while prevalence of a cam deformity decreased (83 to 28%, p < 0.001). • Progressive cartilage damage was present in 37% of patients and was associated with extensive preoperative cartilage damage > 2 h (OR 7.72; p = 0.02) and with an incremental increase in postoperative alpha angles (OR 1.18; p = 0.04).


Asunto(s)
Cartílago Articular , Pinzamiento Femoroacetabular , Luxación Congénita de la Cadera , Luxación de la Cadera , Acetábulo/patología , Acetábulo/cirugía , Adulto , Artroscopía/métodos , Cartílago Articular/diagnóstico por imagen , Cartílago Articular/patología , Femenino , Pinzamiento Femoroacetabular/diagnóstico por imagen , Pinzamiento Femoroacetabular/epidemiología , Pinzamiento Femoroacetabular/cirugía , Luxación de la Cadera/diagnóstico por imagen , Luxación de la Cadera/epidemiología , Luxación de la Cadera/cirugía , Articulación de la Cadera/diagnóstico por imagen , Articulación de la Cadera/patología , Articulación de la Cadera/cirugía , Humanos , Masculino , Dolor Postoperatorio , Prevalencia , Estudios Retrospectivos , Adulto Joven
8.
J Pediatr Orthop ; 42(10): e963-e970, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36099440

RESUMEN

INTRODUCTION: Slipped capital femoral epiphysis (SCFE) is the most common hip disorder in adolescent patients that can result in complex 3 dimensional (3D)-deformity and hip preservation surgery (eg, in situ pinning or proximal femoral osteotomy) is often performed. But there is little information about location of impingement.Purpose/Questions: The purpose of this study was to evaluate (1) impingement-free hip flexion and internal rotation (IR), (2) frequency of impingement in early flexion (30 to 60 degrees), and (3) location of acetabular and femoral impingement in IR in 90 degrees of flexion (IRF-90 degrees) and in maximal flexion for patients with untreated severe SCFE using preoperative 3D-computed tomography (CT) for impingement simulation. METHODS: A retrospective study involving 3D-CT scans of 18 patients (21 hips) with untreated severe SCFE (slip angle>60 degrees) was performed. Preoperative CT scans were used for bone segmentation of preoperative patient-specific 3D models. Three patients (15%) had bilateral SCFE. Mean age was 13±2 (10 to 16) years and 67% were male patients (86% unstable slip, 81% chronic slip). The contralateral hips of 15 patients with unilateral SCFE were evaluated (control group). Validated software was used for 3D impingement simulation (equidistant method). RESULTS: (1) Impingement-free flexion (46±32 degrees) and IRF-90 degrees (-17±18 degrees) were significantly ( P <0.001) decreased in untreated severe SCFE patients compared with contralateral side (122±9 and 36±11 degrees).(2) Frequency of impingement was significantly ( P <0.001) higher in 30 and 60 degrees flexion (48% and 71%) of patients with severe SCFE compared with control group (0%).(3) Acetabular impingement conflict was located anterior-superior (SCFE patients), mostly 12 o'clock (50%) in IRF-90 degrees (70% on 2 o'clock for maximal flexion). Femoral impingement was located on anterior-superior to anterior-inferior femoral metaphysis (between 2 and 6 o'clock, 40% on 3 o'clock and 40% on 5 o'clock) in IRF-90 degrees and on anterior metaphysis (40% on 3 o'clock) in maximal flexion and frequency was significantly ( P <0.001) different compared with control group. CONCLUSION: Severe SCFE patients have limited hip flexion and IR due to early hip impingement using patient-specific preoperative 3D models. Because of the large variety of hip motion, individual evaluation is recommended to plan the osseous correction for severe SCFE patients. LEVEL OF EVIDENCE: Level III.


Asunto(s)
Pinzamiento Femoroacetabular , Epífisis Desprendida de Cabeza Femoral , Acetábulo/cirugía , Adolescente , Niño , Femenino , Pinzamiento Femoroacetabular/diagnóstico por imagen , Pinzamiento Femoroacetabular/cirugía , Articulación de la Cadera/diagnóstico por imagen , Articulación de la Cadera/cirugía , Humanos , Masculino , Rango del Movimiento Articular , Estudios Retrospectivos , Epífisis Desprendida de Cabeza Femoral/diagnóstico por imagen , Epífisis Desprendida de Cabeza Femoral/cirugía
9.
J Pediatr Orthop ; 42(5): e421-e426, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35250015

RESUMEN

BACKGROUND: Slipped capital femoral epiphyses (SCFE) is associated with out-toeing of the foot and external rotation gait. But it is unknown if SCFE patients treated with the modified Dunn procedure have out-toeing at follow up.Therefore, we used instrumented gait analysis and questioned (1) do severe SCFE patients treated with a modified Dunn procedure have symmetrical foot progression angle (FPA) compared with contralateral side and compared with asymptomatic volunteers (2) what is the prevalence of out-toeing gait and what are the outcome socres at follow up. METHODS: Gait analysis of 22 patients (22 hips) treated with an unilateral modified Dunn procedure for severe SCFE (slip angle >60 degrees, 2002 to 2011) was retrospectively evaluated. Of 38 patients with minimal 5-year follow up, 2 hips (4%) had avascular necrosis of the femoral head and were excluded for gait analysis. Twenty-two patients were available for gait analysis at follow up (mean follow up of 9±2 y). Mean age at follow up was 22±3 years. Mean preoperative slip angle was 64±8 degrees (33% unstable slips) and decreased postoperatively (slip angle of 8±4 degrees). Gait analysis was performed with computer-based instrumented walkway system (GAITRite) to measure FPA with embedded pressure sensors. Patients were compared with control group of 18 healthy asymptomatic volunteers (36 feet, mean age 29±6 y). RESULTS: (1) Mean FPA of SCFE patients (3.6±6.4 degrees) at follow up was not significantly different compared with their contralateral side (5.6±5.5 degrees) and compared with FPA of controls (4.0±4.5 degrees). (2) Of the 22 SCFE patients, most of them (19 hips, 86%) had normal FPA (-5 to 15 degrees), 2 patients had in-toeing (FPA<-5 degrees) and 1 had out-toeing (FPA >15 degrees) and was not significantly different compared with control group. (3) Mean modified Harris hip score (mHHS) was 93±11 points, mean Hip Disability and Osteoarthritis Outcome Score (HOOS) score was 91±10 points. Three patients (14%) had mHHS <80 points and walked with normal FPA. The 2 patients with in-toeing and one patient with out-toeing had mHHS >95 points. CONCLUSIONS: Patients with severe SCFE treated with modified Dunn procedure had mostly symmetrical FPA and good hip scores at long term follow up. This is in contrast to previous studies. Although 1 patient had out-toeing and 2 patients had in-toeing at follow up, they had good hip scores. LEVEL OF EVIDENCE: Level III-retrospective comparative study.


Asunto(s)
Fijación Intramedular de Fracturas , Metatarso Valgo , Metatarso Varo , Epífisis Desprendida de Cabeza Femoral , Adulto , Estudios de Seguimiento , Humanos , Estudios Retrospectivos , Epífisis Desprendida de Cabeza Femoral/cirugía , Resultado del Tratamiento , Adulto Joven
10.
Medicina (Kaunas) ; 58(6)2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35744095

RESUMEN

Background and Objectives: Even after the 'death' of Lewinnek's safe zone, the orientation of the prosthetic cup in total hip arthroplasty is crucial for success. Accurate cup placement can be achieved with surgical navigation systems. The literature lacks study cohorts with large numbers of hips because postoperative computer tomography is required for the reproducible evaluation of the acetabular component position. To overcome this limitation, we used a validated software program, HipMatch, to accurately assess the cup orientation based on an anterior-posterior pelvic X-ray. The aim of this study were to (1) determine the intraoperative 'individual adjustment' of the cup positioning compared to the widely suggested target values of 40° of inclination and 15° of anteversion, and evaluate the (2) 'accuracy', (3) 'precision', and (4) robustness, regarding systematic errors, of an image-free navigation system in routine clinical use. Material and Methods: We performed a retrospective, accuracy study in a single surgeon case series of 367 navigated primary total hip arthroplasties (PiGalileoTM, Smith+Nephew) through an anterolateral approach performed between January 2011 and August 2018. The individual adjustments were defined as the differences between the target cup orientation (40° of inclination, 15° of anteversion) and the intraoperative registration with the navigation software. The accuracy was the difference between the intraoperative captured cup orientation and the actual postoperative cup orientation determined by HipMatch. The precision was analyzed by the standard deviation of the difference between the intraoperative registered and the actual cup orientation. The outliers were detected using the Tukey method. Results: Compared to the target value (40° inclination, 15° anteversion), the individual adjustments showed that the cups are impacted in higher inclination (mean 3.2° ± 1.6°, range, (−2)−18°) and higher anteversion (mean 5.0° ± 7.0°, range, (−15)−23°) (p < 0.001). The accuracy of the navigated cup placement was −1.7° ± 3.0°, ((−15)−11°) for inclination, and −4.9° ± 6.2° ((−28)−18°) for anteversion (p < 0.001). Precision of the system was higher for inclination (standard deviation SD 3.0°) compared to anteversion (SD 6.2°) (p < 0.001). We found no difference in the prevalence of outliers for inclination (1.9% (7 out of 367)) compared to anteversion (1.63% (6 out of 367), p = 0.78). The Bland-Altman analysis showed that the differences between the intraoperatively captured final position and the postoperatively determined actual position were spread evenly and randomly for inclination and anteversion. Conclusion: The evaluation of an image-less navigation system in this large study cohort provides accurate and reliable intraoperative feedback. The accuracy and the precision were inferior compared to CT-based navigation systems particularly regarding the anteversion. However the assessed values are certainly within a clinically acceptable range. This use of image-less navigation offers an additional tool to address challenging hip prothesis in the context of the hip−spine relationship to achieve adequate placement of the acetabular components with a minimum of outliers.


Asunto(s)
Artroplastia de Reemplazo de Cadera , Prótesis de Cadera , Cirugía Asistida por Computador , Acetábulo/diagnóstico por imagen , Acetábulo/cirugía , Humanos , Estudios Retrospectivos , Cirugía Asistida por Computador/métodos
11.
Eur J Orthop Surg Traumatol ; 32(7): 1265-1274, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34430988

RESUMEN

INTRODUCTION: Dynamic Intraligamentary Stabilization (DIS) is a technique for preservation, anatomical repair and stabilization of a freshly injured anterior cruciate ligament (ACL). The main purpose of this study was to evaluate the short-term re-operation rate when compared to traditional autograft reconstruction. METHODS: Four, from the developer independent, centres enrolled patients that underwent ACL repair by DIS, according to the specific indications given by MRI imaging at a minimum follow-up of 12 months. The re-operation rate was recorded as primary outcome. Secondary outcome measures were the postoperative antero-posterior knee laxity (using a portable Rolimeter®), as well as the Tegner, Lysholm and IKDC Scores. RESULTS: A total of 105 patients were investigated with a median follow-up of 21 months. Thirteen patients were lost to follow-up. Of the remaining 92 patients 15 (16.3%) had insufficient functional stability and required subsequent ACL reconstruction. These patients were excluded from further analysis, leaving 77 consecutive patients for a 12 months follow-up. The median age at time of surgery was 30 years for that group. At time of follow-up a median antero-posterior translation difference of 2 mm was measured. None of these patients reported subjective insufficiency (giving way), but in 14 patients (18.2%), the difference of antero-posterior translation was more than 3 mm. We found a median Tegner Score of 5.5, a median Lysholm Score of 95.0 and a median IKDC Score of 89.4. CONCLUSION: The main finding of this multicentre study is a relevant re-operation rate of 16.3%. Another 18.2% showed objective antero-posterior laxity (≥ 3 mm) during testing raising the suspicion of postoperative non-healing. The failure rate of DIS in this study is higher than for reconstruction with an autologous tendon graft. However, our successfully treated patients had a good clinical and functional outcome based on antero-posterior knee laxity and clinical scores, comparable to patients treated by autograft reconstruction.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Reconstrucción del Ligamento Cruzado Anterior , Ligamento Cruzado Anterior/cirugía , Lesiones del Ligamento Cruzado Anterior/diagnóstico , Lesiones del Ligamento Cruzado Anterior/cirugía , Reconstrucción del Ligamento Cruzado Anterior/efectos adversos , Reconstrucción del Ligamento Cruzado Anterior/métodos , Estudios de Seguimiento , Humanos , Articulación de la Rodilla/diagnóstico por imagen , Articulación de la Rodilla/cirugía , Resultado del Tratamiento
12.
Radiology ; 299(1): 150-158, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33620288

RESUMEN

Background Often used for T1 mapping of hip cartilage, three-dimensional (3D) dual-flip-angle (DFA) techniques are highly sensitive to flip angle variations related to B1 inhomogeneities. The authors hypothesized that 3D magnetization-prepared 2 rapid gradient-echo (MP2RAGE) MRI would help provide more accurate T1 mapping of hip cartilage at 3.0 T than would 3D DFA techniques. Purpose To compare 3D MP2RAGE MRI with 3D DFA techniques using two-dimensional (2D) inversion recovery T1 mapping as a standard of reference for hip cartilage T1 mapping in phantoms, healthy volunteers, and participants with hip pain. Materials and Methods T1 mapping at 3.0 T was performed in phantoms and in healthy volunteers using 3D MP2RAGE MRI and 3D DFA techniques with B1 field mapping for flip angle correction. Participants with hip pain prospectively (July 2019-January 2020) underwent indirect MR arthrography (with intravenous administration of 0.2 mmol/kg of gadoterate meglumine), including 3D MP2RAGE MRI. A 2D inversion recovery-based sequence served as a T1 reference in phantoms and in participants with hip pain. In healthy volunteers, cartilage T1 was compared between 3D MP2RAGE MRI and 3D DFA techniques. Paired t tests and Bland-Altman analysis were performed. Results Eleven phantoms, 10 healthy volunteers (median age, 27 years; range, 26-30 years; five men), and 20 participants with hip pain (mean age, 34 years ± 10 [standard deviation]; 17 women) were evaluated. In phantoms, T1 bias from 2D inversion recovery was lower for 3D MP2RAGE MRI than for 3D DFA techniques (mean, 3 msec ± 11 vs 253 msec ± 85; P < .001), and, unlike 3D DFA techniques, the deviation found with MP2RAGE MRI did not correlate with increasing B1 deviation. In healthy volunteers, regional cartilage T1 difference (109 msec ± 163; P = .008) was observed only for the 3D DFA technique. In participants with hip pain, the mean T1 bias of 3D MP2RAGE MRI from 2D inversion recovery was -23 msec ± 31 (P < .001). Conclusion Compared with three-dimensional (3D) dual-flip-angle techniques, 3D magnetization-prepared 2 rapid gradient-echo MRI enabled more accurate T1 mapping of hip cartilage, was less affected by B1 inhomogeneities, and showed high accuracy against a T1 reference in participants with hip pain. © RSNA, 2021.


Asunto(s)
Cartílago Articular/diagnóstico por imagen , Articulación de la Cadera/diagnóstico por imagen , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Adulto , Medios de Contraste , Femenino , Gadolinio DTPA , Voluntarios Sanos , Humanos , Masculino , Dimensión del Dolor , Fantasmas de Imagen , Estudios Prospectivos
13.
Clin Orthop Relat Res ; 479(5): 1002-1013, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33787519

RESUMEN

BACKGROUND: Several classification systems have been used to describe early lesions of hip cartilage and the acetabular labrum in young adults with hip pain. Some of them were introduced before the concept of femoroacetabular impingement was proposed. Others were developed for other joints (such as the patellofemoral joint). However, these often demonstrate inadequate reliability, and they do not characterize all possible lesions. Therefore, we developed a novel classification system. QUESTION/PURPOSE: We asked: What is the (1) intraobserver reliability, (2) interobserver reproducibility, and (3) percentage of nonclassifiable lesions of the new classification system for damage to the hip cartilage and labrum compared with six established classification systems for chondral lesions (Beck et al. [4], Konan et al. [10], Outerbridge et al. [14]) and labral lesions (Beck et al. [3], Lage et al. [12], Peters and Erickson [15])? METHODS: We performed a validation study of a new classification system of early chondrolabral degeneration lesions based on intraoperative video documentation taken during surgical hip dislocations for joint-preserving surgery in 57 hips (56 patients) performed by one surgeon with standard video documentation of intraarticular lesions. The exclusion criteria were low-quality videos, inadequate exposure angles, traumatic lesions, and incomplete radiographic documentation. This left 42 hips (41 patients) for the blinded and randomized analysis of six raters, including those with cam-pincer-type femoroacetabular impingement (FAI) (19 hips in 18 patients), isolated cam-type FAI (10 hips), extraarticular FAI due to femoral anteversion (seven hips), isolated pincer-type FAI (two hips), focal avascular necrosis (two hips), localized pigmented villonodular synovitis (one hip), and acetabular dysplasia as a sequelae of Perthes disease (one hip). The raters had various degrees of experience in hip surgery: Three were board-certified orthopaedic fellows and three were orthopaedic residents, in whom we chose to prove the general usability of the classification systems in less experienced readers. Every rater was given the original publication of all existing classification systems and a visual guide of the new Bern classification system. Every rater classified the lesions according the existing classifications (cartilage: Beck et al. [4], Konan et al. [10], and Outerbridge et al. [14]; labrum: Beck et al. [3], Peters and Erickson [15], and Lage et al. [12]) and our new Bern chondrolabral classification system. The intraclass correlation coefficient with 95% confidence interval was used to assess the intraobserver reliability and interobserver reproducibility. The percentage of nonclassifiable lesions was calculated as an absolute number and percentage. RESULTS: The intraobserver intercorrelation coefficients (ICCs) for cartilage lesions were as follows: the Bern classification system (0.68 [95% CI 0.61 to 0.70]), Beck (0.44 [95% CI 0.34 to 0.54]), Konan (0.39 [95% CI 0.29 to 0.49]), and the Outerbridge classification (0.57 [95% CI 0.48 to 0.65]). For labral lesions, the ICCs were as follows: the Bern classification (0.70 [95% CI 0.63 to 0.76]), Peters (0.42 [95% CI 0.31 to 0.51]), Lage (0.26 [95% CI 0.15 to 0.38]), and Beck (0.59 [95% CI 0.51 to 0.67]). The interobserver ICCs for cartilage were as follows: the Bern classification system (0.63 [95% CI 0.51 to 0.75), the Outerbridge (0.14 [95% CI 0.04 to 0.28]), Konan (0.58 [95% CI 0.40 to 0.76]), and Beck (0.52 [95% CI 0.39 to 0.66]). For labral lesions, the ICCs were as follows: the Bern classification (0.61 [95% CI 0.49 to 0.74]), Beck (0.31 [95% CI 0.19 to 0.46]), Peters (0.28 [95% CI 0.16 to 0.44]), and Lage (0.20 [95% CI 0.09 to 0.35]). The percentage of nonclassifiable cartilage lesions was 0% for the Bern, 0.04% for Beck, 17% for Konan, and 25% for the Outerbridge classification. The percentage of nonclassifiable labral lesions was 0% for Bern and Beck, 4% for Peters, and 25% for Lage. CONCLUSION: We have observed some shortcomings with currently used classification systems for hip pathology, and the new classification system we developed seems to have improved the intraobserver reliability compared with the Beck and Konan classifications in cartilage lesions and with the Peters and Lage classifications in labral lesions. The interrater reproducibility of the Bern classification seems to have improved in cartilage lesions compared with the Outerbridge classification and in labral lesions compared with the Beck, Peters, and Lage classifications. The Bern classification identified all present cartilage and labral lesions. It provides a solid clinical basis for accurate descriptions of early degenerative hip lesions independent of etiology, and it is reproducible enough to use in the reporting of clinical research. Further studies need to replicate our findings in the hands of nondevelopers and should focus on the prognostic value of this classification and its utility in guiding surgical indications. LEVEL OF EVIDENCE: Level II, diagnostic study.


Asunto(s)
Acetábulo/patología , Artralgia/patología , Cartílago Articular/patología , Pinzamiento Femoroacetabular/patología , Articulación de la Cadera/patología , Acetábulo/diagnóstico por imagen , Acetábulo/cirugía , Adulto , Artralgia/clasificación , Artralgia/diagnóstico por imagen , Artralgia/cirugía , Artroscopía , Cartílago Articular/diagnóstico por imagen , Cartílago Articular/cirugía , Femenino , Pinzamiento Femoroacetabular/clasificación , Pinzamiento Femoroacetabular/diagnóstico por imagen , Pinzamiento Femoroacetabular/cirugía , Articulación de la Cadera/diagnóstico por imagen , Articulación de la Cadera/cirugía , Humanos , Masculino , Variaciones Dependientes del Observador , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Estudios Retrospectivos , Grabación en Video , Adulto Joven
14.
Clin Orthop Relat Res ; 479(5): 974-987, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33300754

RESUMEN

BACKGROUND: Assessment of AP acetabular coverage is crucial for choosing the right surgery indication and for obtaining a good outcome after hip-preserving surgery. The quantification of anterior and posterior coverage is challenging and requires either other conventional projections, CT, MRI, or special measurement software, which is cumbersome, not widely available and implies additional radiation. We introduce the "rule of thirds" as a promising alternative to provide a more applicable and easy method to detect an excessive or deficient AP coverage. This method attributes the intersection point of the anterior (posterior) wall to thirds of the femoral head radius (diameter), the medial third suggesting deficient and the lateral third excessive coverage. QUESTION/PURPOSE: What is the validity (area under the curve [AUC], sensitivity, specificity, positive/negative likelihood ratios [LR(+)/LR(-)], positive/negative predictive values [PPV, NPV]) for the rule of thirds to detect (1) excessive and (2) deficient anterior and posterior coverages compared with previously established radiographic values of under-/overcoverage using Hip2Norm as the gold standard? METHODS: We retrospectively evaluated all consecutive patients between 2003 and 2015 from our institutional database who were referred to our hospital for hip pain and were potentially eligible for joint-preserving hip surgery. We divided the study group into six specific subgroups based on the respective acetabular pathomorphology to cover the entire range of anterior and posterior femoral coverage (dysplasia, overcoverage, severe overcoverage, excessive acetabular anteversion, acetabular retroversion, total acetabular retroversion). From this patient cohort, 161 hips were randomly selected for analysis. Anterior and posterior coverage was determined with Hip2Norm, a validated computer software program for evaluating acetabular morphology. The anterior and posterior wall indices were measured on standardized AP pelvis radiographs, and the rule of thirds was applied by one observer. RESULTS: The detection of excessive anterior and posterior acetabular wall using the rule of thirds revealed an AUC of 0.945 and 0.933, respectively. Also the detection of a deficient anterior and posterior acetabular wall by applying the rule of thirds revealed an AUC of 0.962 and 0.876, respectively. For both excessive and deficient anterior and posterior acetabular coverage, we found high specificities and PPVs but low sensitivities and NPVs. CONCLUSION: We found a high probability for an excessive (deficient) acetabular wall when this intersection point lies in the lateral (medial) third, which would qualify for surgical correction. On the other hand, if this point is not in the lateral (medial) third, an excessive (deficient) acetabular wall cannot be categorically excluded. Thus, the rule of thirds is very specific but not as sensitive as we had expected. LEVEL OF EVIDENCE: Level II, diagnostic study.


Asunto(s)
Acetábulo/diagnóstico por imagen , Retroversión Ósea/diagnóstico por imagen , Reglas de Decisión Clínica , Cabeza Femoral/diagnóstico por imagen , Luxación de la Cadera/diagnóstico por imagen , Articulación de la Cadera/diagnóstico por imagen , Acetábulo/fisiopatología , Acetábulo/cirugía , Adolescente , Adulto , Anciano , Puntos Anatómicos de Referencia , Artralgia/diagnóstico , Artralgia/fisiopatología , Artralgia/cirugía , Retroversión Ósea/fisiopatología , Retroversión Ósea/cirugía , Femenino , Cabeza Femoral/fisiopatología , Luxación de la Cadera/fisiopatología , Luxación de la Cadera/cirugía , Articulación de la Cadera/fisiopatología , Articulación de la Cadera/cirugía , Humanos , Masculino , Persona de Mediana Edad , Dimensión del Dolor , Valor Predictivo de las Pruebas , Interpretación de Imagen Radiográfica Asistida por Computador , Reproducibilidad de los Resultados , Estudios Retrospectivos , Adulto Joven
15.
Clin Orthop Relat Res ; 479(5): 1052-1065, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33605631

RESUMEN

BACKGROUND: Periacetabular osteotomy (PAO) has been shown to be a valuable option for delaying the onset of osteoarthritis in patients with hip dysplasia. Published studies at 30 years of follow-up found that postoperative anterior overcoverage and posterior undercoverage were associated with early conversion to THA. The anterior and posterior wall indices are practical tools for assessing AP coverage on standard AP radiographs of the pelvis pre-, intra-, and postoperatively. However, no study that we know of has evaluated the relationship between the postoperative anterior and posterior wall indices and survivorship free from arthroplasty. QUESTIONS/PURPOSES: In a study including patients after PAO for developmental dysplasia of the hip (DDH), we evaluated whether the acetabular wall index is associated with conversion to THA in the long-term after PAO. We asked: (1) Is an abnormal postoperative anterior wall index associated with conversion to THA after PAO? (2) Is an abnormal postoperative posterior wall index associated with conversion to THA after PAO? (3) Are there other factors associated with joint replacement after PAO? METHODS: This retrospective study involved pooling data of PAO for DDH from two previously published sources. The first series (1984-1987) comprised the very first 75 PAOs for symptomatic DDH performed at the inventor's institution. The second (1997-2000) comprised a series of PAOs for symptomatic DDH completed at the same institution 10 years later. No patient was lost to follow-up. Fifty hips (44 patients) were excluded for predefined reasons (previous surgery, substantial femoral pathomorphologies, poor-quality radiographs), leaving 115 hips (102 patients, mean age 29 ± 11 years, 28% male) for analysis with a mean follow-up of 22 ± 6 years. One observer not involved in patient treatment digitally measured the anterior and posterior wall indices on postoperative AP pelvic radiographs of all patients. All patients were contacted by mail or telephone to confirm any conversion to THA and the timing of that procedure relative to the index procedure. We performed univariate and multivariate Cox regression analyses using conversion to THA as our endpoint to determine whether the anterior and posterior wall indices are associated with prosthetic replacement in the long-term after PAO. Thirty-one percent (36 of 115) of hips were converted to THA within a mean of 15 ± 7 years until failure. The mean follow-up duration of the remaining patients was 22 ± 6 years. RESULTS: A deficient anterior wall index was associated with conversion THA in the long-term after PAO (adjusted hazard ratio 10 [95% CI 3.6 to 27.9]; p < 0.001). Although observed in the univariate analysis, we could not find a multivariate association between the posterior wall index and a higher conversion rate to THA. Grade 0 Tönnis osteoarthritis was associated with joint preservation (adjusted HR 0.2 [95% CI 0.07 to 0.47]; p = 0.005). Tönnis osteoarthritis Grades 2 and 3 were associated with conversion to THA (adjusted HR 2.3 [95% CI 0.9 to 5.7]; p = 0.08). CONCLUSION: A deficient anterior wall index is associated with a decreased survivorship of the native hip in the long-term after PAO. Intraoperatively, in addition to following established radiographical guidelines, the acetabular wall indices should be measured systematically to ascertain optimal acetabular fragment version to increase the likelihood of reconstructive survival after PAO for DDH. LEVEL OF EVIDENCE: Level III, therapeutic study.


Asunto(s)
Acetábulo/cirugía , Artroplastia de Reemplazo de Cadera , Displasia del Desarrollo de la Cadera/cirugía , Cabeza Femoral/cirugía , Articulación de la Cadera/cirugía , Osteotomía , Acetábulo/diagnóstico por imagen , Acetábulo/fisiopatología , Adolescente , Adulto , Artroplastia de Reemplazo de Cadera/efectos adversos , Fenómenos Biomecánicos , Displasia del Desarrollo de la Cadera/diagnóstico por imagen , Displasia del Desarrollo de la Cadera/fisiopatología , Femenino , Cabeza Femoral/diagnóstico por imagen , Cabeza Femoral/fisiopatología , Articulación de la Cadera/diagnóstico por imagen , Articulación de la Cadera/fisiopatología , Humanos , Masculino , Osteotomía/efectos adversos , Rango del Movimiento Articular , Reoperación , Estudios Retrospectivos , Medición de Riesgo , Factores de Riesgo , Factores de Tiempo , Resultado del Tratamiento , Adulto Joven
16.
Arch Orthop Trauma Surg ; 141(11): 1845-1854, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32794150

RESUMEN

INTRODUCTION: The aim of this study was to report a long-term follow-up of patients treated with autologous matrix-induced chondrogenesis (AMIC) for full-thickness chondral and osteochondral defects of the femoral condyle or patella combined with the correction of lower limb malalignment or patellar tracking if indicated. METHODS: Thirty-three patients (thirty-four knees) were treated surgically for chondral and osteochondral cartilage defects of the knee joint. Regarding the origin of the lesion, patients were divided into three groups. Chondral lesions were observed in the patella (cP group) in fifteen patients, whereas eight patients demonstrated a femoral condylar location (cF group). Eleven patients presented with osteochondritis dissecans of the femur (ocF group). Associated procedures involving realignment of the patella, osteotomy around the knee, or cancellous bone grafting were performed when necessary. The mean size of the lesions was 2.8 ± 1.6 cm2, and the mean patient age was 37.1 ± 11.9 years. To evaluate the clinical outcomes, the Lysholm score and the VAS pain score were imposed, as well as the reoperation rate. RESULTS: After an average of 9.3 ± 1 years, follow-up was completed in 79% of the patients. Two patients from the cohort received a total knee prosthesis. The primary outcome measures (Lysolm and VAS pain) at 9-year follow-up were 85 ± 13 for the Lysholm score and 1.9 ± 1.6 for the VAS score in the entire analyzed population. Compared to the preoperative values (Lysholm 56 ± 19, VAS 5.8 ± 2.4) and the 2-year results (Lysholm 85 ± 16, VAS 2.0 ± 2.1), there was significant improvement in the first 2 years after intervention and a stable course in the long-term observation. The same was observed in the cP and ocF subgroups, whereas patients of the cF group showed even further improvement. CONCLUSIONS: AMIC showed durable results in aligned knees. The favorable outcome was maintained after an average of 9 years when malalignment of the lower limb and patellar maltracking were corrected. Such data are particularly encouraging for young adult patients who may benefit from a procedure that circumvents early arthroplasty.


Asunto(s)
Cartílago Articular , Condrogénesis , Adulto , Cartílago Articular/cirugía , Estudios de Seguimiento , Humanos , Articulación de la Rodilla/cirugía , Persona de Mediana Edad , Trasplante Autólogo , Resultado del Tratamiento , Adulto Joven
17.
Arch Orthop Trauma Surg ; 140(10): 1327-1338, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31811373

RESUMEN

INTRODUCTION: Management of pathological fractures of the proximal femur is often challenging. Compound double-plate osteosynthesis has been specifically developed for surgical treatment of these pathological fractures. To our knowledge, this study represents the largest series to date of double-plate compound osteosynthesis with the longest follow-up. MATERIALS AND METHODS: Using our institutional digital database, we identified 61 procedures in 53 patients at the proximal femur. Patients were divided into two groups. A 'primary' group with all cases in which a double-plate compound osteosynthesis was performed as initial procedure (n = 46) and a 'revision' group with all cases in which a double-plate compound osteosynthesis was performed as revision procedure after failed previous attempts of internal fixation (n = 15). (1) The survivorship of the hip was calculated using the Kaplan-Meier survivorship analysis. (2) Complications were graded using Sink's classification. (3) The functional outcome was quantified with the Merle d'Aubigné and Postel score. (4) Risk factors were identified based on a multivariate Cox-regression analysis. RESULTS: The cumulative Kaplan-Meier survivorship of the primary group was 96% at 6 months, 90% at 1 year, 5 years and thereafter and 83% at 6 months, 74% at 1 year, 53% at 2 years for the 'revision' group (p = 0.0008). According to the classification of Sink et al., the rate of grade III and IV complications was significantly lower in the primary group (p < 0.0001). The mean Merle d'Aubigné score was 14 ± 7 at 0-3 months, 13 ± 3 at 3-6 months, 15 ± 3 at 6-12 months and 15 ± 4 thereafter (p = 0.54). The only multivariate negative predictor was previous surgery with a hazard ratio of 9.2 (p < 0.006). CONCLUSION: Double-plate compound osteosynthesis is a valuable treatment option for pathological fractures in proximal femur with good functional results.


Asunto(s)
Fracturas del Fémur/cirugía , Fijación Interna de Fracturas , Fracturas Espontáneas/cirugía , Complicaciones Posoperatorias/epidemiología , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Fijación Interna de Fracturas/efectos adversos , Fijación Interna de Fracturas/instrumentación , Fijación Interna de Fracturas/mortalidad , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
18.
Orthopade ; 49(6): 471-481, 2020 Jun.
Artículo en Alemán | MEDLINE | ID: mdl-31853580

RESUMEN

BACKGROUND: Torsional deformities of the femur include femoral retrotorsion and increased femoral torsion, which are possible causes for hip pain and osteoarthritis. For patients with femoroacetabular impingement (FAI), torsional deformities of the femur represent an additional cause of FAI in addition to cam and pincer-type FAI. OBJECTIVES: The aim of this article is to provide an overview of measurement techniques and normal values of femoral torsion. The clinical presentation, possible combinations and surgical therapy of patients with torsional deformities of the femur will be discussed. METHODS: For measurement of femoral torsion, CT or MRI represent the method of choice. The various definitions should be taken into account, because they can lead to differing values and misdiagnosis. This is the case especially for patients with high femoral torsion. Dynamic 3D impingement simulation using 3D-CT can help to differentiate between intra und extra-articular FAI. RESULTS AND DISCUSSION: Femoral retrotorsion (< 5°) can lead to anterior intra- and extraarticular (subspine) FAI, between the anterior iliac inferior spine (AIIS) and the proximal femur. Increased femoral torsion (> 35°) can lead to posterior intra- and extra-articular ischiofemoral FAI, between the lesser/greater trochanter and the ischial tuberosity. During clinical examination, a patient with femoral retrotorsion exhibits loss of internal rotation and a positive anterior impingement test. Hips with increased femoral torsion show high internal rotation if examined in prone position and have a positive FABER and posterior impingement test. During surgical therapy for patients with torsional deformities, intra and extra-articular causes for FAI in addition to cam and pincer-deformities should be considered. In addition to hip arthroscopy and surgical hip dislocation, also femoral rotational or derotational osteotomies should be evaluated during surgical planning of these patients.


Asunto(s)
Artroscopía/métodos , Pinzamiento Femoroacetabular/diagnóstico por imagen , Fémur/diagnóstico por imagen , Luxación de la Cadera/cirugía , Imagenología Tridimensional , Desviación Ósea/etiología , Luxación de la Cadera/complicaciones , Luxación de la Cadera/diagnóstico por imagen , Articulación de la Cadera/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Rango del Movimiento Articular , Estudios Retrospectivos , Anomalía Torsional/diagnóstico por imagen , Anomalía Torsional/etiología
19.
Clin Orthop Relat Res ; 477(5): 1073-1083, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30624313

RESUMEN

BACKGROUND: Correct quantification of femoral torsion is crucial to diagnose torsional deformities, make an indication for surgical treatment, or plan the amount of correction. However, no clear evaluation of different femoral torsion measurement methods for hips with excessive torsion has been performed to date. QUESTIONS/PURPOSES: (1) How does CT-based measurement of femoral torsion differ among five commonly used measurement methods? (2) Do differences in femoral torsion among measurement methods increase in hips with excessive femoral torsion? (3) What is the reliability and reproducibility of each of the five torsion measurement methods? METHODS: Between March and August 2016, we saw 86 new patients (95 hips) with hip pain and physical findings suggestive for femoroacetabular impingement at our outpatient tertiary clinic. Of those, 56 patients (62 hips) had a pelvic CT scan including the distal femur for measurement of femoral torsion. We excluded seven patients (seven hips) with previous hip surgery, two patients (two hips) with sequelae of Legg-Calvé-Perthes disease, and one patient (one hip) with a posttraumatic deformity. This resulted in 46 patients (52 hips) in the final study group with a mean age of 28 ± 9 years (range, 17-51 years) and 27 female patients (59%). Torsion was compared among five commonly used assessment measures, those of Lee et al., Reikerås et al., Jarrett et al., Tomczak et al., and Murphy et al. They differed regarding the level of the anatomic landmark for the proximal femoral neck axis; the method of Lee had the most proximal definition followed by the methods of Reikerås, Jarrett, and Tomczak at the base of the femoral neck and the method of Murphy with the most distal definition at the level of the lesser trochanter. The definition of the femoral head center and of the distal reference was consistent for all five measurement methods. We used the method described by Murphy et al. as our baseline measurement method for femoral torsion because it reportedly most closely reflects true anatomic femoral torsion. With this method we found a mean femoral torsion of 28 ± 13°. Mean values of femoral torsion were compared among the five methods using multivariate analysis of variance. All differences between two of the measurement methods were plotted over the entire range of femoral torsion to evaluate a possible increase in hips with excessive femoral torsion. All measurements were performed by two blinded orthopaedic residents (FS, TDL) at two different occasions to measure intraobserver reproducibility and interobserver reliability using intraclass correlation coefficients (ICCs). RESULTS: We found increasing values for femoral torsion using measurement methods with a more distal definition of the proximal femoral neck axis: Lee et al. (most proximal definition: 11° ± 11°), Reikerås et al. (15° ± 11°), Jarrett et al. (19° ± 11°), Tomczak et al. (25° ± 12°), and Murphy et al. (most distal definition: 28° ± 13°). The most pronounced difference was found for the comparison between the methods of Lee et al. and Murphy et al. with a mean difference of 17° ± 5° (95% confidence interval, 16°-19°; p < 0.001). For six of 10 possible pairwise comparisons, the difference between two methods increased with increasing femoral torsion and decreased with decreasing femoral torsion. We observed a fair-to-strong linear correlation (R range, 0.306-0.622; all p values < 0.05) for any method compared with the Murphy method and for the Reikerås and Jarrett methods when compared with the Tomczak method. For example, a hip with 10° of femoral antetorsion according Murphy had a torsion of 1° according to Reikerås, which corresponds to a difference of 9°. This difference increased to 20° in hips with excessive torsion; for example, a hip with 60° of torsion according to Murphy had 40° of torsion according to Reikerås. All five methods for measuring femoral torsion showed excellent agreement for both intraobserver reproducibility (ICC, 0.905-0.973) and interobserver reliability (ICC, 0.938-0.969). CONCLUSIONS: Because the quantification of femoral torsion in hips with excessive femoral torsion differs considerably among measurement methods, it is crucial to state the applied methods when reporting femoral torsion and to be consistent regarding the used measurement method. These differences have to be considered for surgical decision-making and planning the degree of correction. Neglecting the differences among measurement methods to quantify femoral torsion can potentially lead to misdiagnosis and surgical planning errors. LEVEL OF EVIDENCE: Level IV, diagnostic study.


Asunto(s)
Pinzamiento Femoroacetabular/diagnóstico por imagen , Fémur/diagnóstico por imagen , Articulación de la Cadera/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Anomalía Torsional/diagnóstico por imagen , Adolescente , Adulto , Puntos Anatómicos de Referencia , Fenómenos Biomecánicos , Femenino , Pinzamiento Femoroacetabular/fisiopatología , Fémur/fisiopatología , Articulación de la Cadera/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Estudios Retrospectivos , Anomalía Torsional/fisiopatología , Torsión Mecánica , Adulto Joven
20.
Clin Orthop Relat Res ; 477(5): 1111-1122, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30550402

RESUMEN

BACKGROUND: Prophylactic pinning of the asymptomatic and normal-appearing contralateral hip in patients with unilateral slipped capital femoral epiphysis (SCFE) remains controversial. Understanding the minimal 10-year clinical, functional, and radiographic outcomes of the contralateral asymptomatic hip in unilateral SCFE may be helpful in the decision regarding whether the benefits associated with potentially preventing a SCFE are outweighed by the risk of additional surgery. QUESTIONS/PURPOSES: Among patients with SCFE treated with prophylactic pinning of the asymptomatic and contralateral hip, we sought (1) to determine the complications and reoperations; (2) to evaluate the development of cam deformities and the frequency and severity of osteoarthritis progression; and (3) to characterize hip pain and function as measured by the Harris hip score (HHS) and the Hip Disability and Osteoarthritis Outcome Score (HOOS) at minimal 10-year followup. METHODS: Between 1998 and 2005 all patients with SCFE seen at our institution were treated with the modified Dunn procedure and all were offered prophylactic pinning of the contralateral asymptomatic hip. Of the 41 patients who underwent the unilateral modified Dunn procedure and who had an asymptomatic contralateral hip, 37 patients (90%) underwent pinning of that contralateral hip. Of those, 33 patients (80%) were available for clinical and radiographic evaluation for this retrospective study at a minimum of 10 years (mean followup 12 ± 2 years) after surgery. Three patients of the 37 patients only had 10-year clinical followup, including questionnaires sent by mail and telephone, because they refused further radiographic followup and one patient was lost to followup. The group included 19 males and 17 females whose age at surgery was a mean of 13 ± 2 years. Medical charts were reviewed and patients were asked about complications and additional surgical procedures. Most recent postoperative radiographs were evaluated for measurement of the alpha angle, head-neck offset, epiphysis orientation, and osteoarthritis grading according to Tönnis classification and minimum joint space width. The presence of a cam deformity was defined by an alpha angle measurement > 60° on the AP radiograph and/or > 55° on the lateral radiograph. Hip function and pain were assessed by the HHS and HOOS outcome measures. RESULTS: No complications with prophylactic in situ pinning were recorded. Four of 36 (11%) patients underwent subsequent surgical treatment for cam-type femoroacetabular impingement (FAI), and hardware removal was performed in four hips (11%). The mean alpha angle was 53° ± 8° on the AP radiograph and 49° ± 8° on the lateral view at followup. In total, 10 of 33 hips (30%) had a cam morphology at the femoral head-neck junction and four (12%) were symptomatic and underwent FAI surgery. Six of 33 patients (18%) developed an asymptomatic cam morphology at the femoral head-neck junction; in three of 33 hips (9%), the cam deformity instead of lesion were visible only on the lateral projection, and 9% were visible on both the AP and lateral projections. The preoperative offset of the femoral head-neck junction was 10 ± 3 mm on the AP view and 11 ± 4 mm on the lateral view. At followup, the AP offset was 7 ± 3 mm and the lateral offset was 6 ± 3 mm, and on the lateral view, the offset was < 10 mm in eight hips (22%). No patient had radiographic signs of hip osteoarthritis (Tönnis Grade 0). The mean minimum joint space width was 4 ± 0.4 mm. The mean HHS for the 32 patients who did not undergo subsequent surgery was 97 ± 5 at latest followup. The mean postoperative HOOS was 94 ± 8 for the 32 patients at latest followup. CONCLUSIONS: At a minimum followup of 10 years after prophylactic pinning of a contralateral asymptomatic hip, most patients achieve excellent hip scores; however, a substantial proportion will develop a symptomatic cam deformity despite prophylactic pinning. No patient had signs of osteoarthritis at a minimum of 10 years, but almost one-third of the patients who underwent prophylactic pinning developed a cam deformity. LEVEL OF EVIDENCE: Level IV, therapeutic study.


Asunto(s)
Articulación de la Cadera/cirugía , Osteoartritis de la Cadera/epidemiología , Complicaciones Posoperatorias/epidemiología , Procedimientos Quirúrgicos Profilácticos/efectos adversos , Epífisis Desprendida de Cabeza Femoral/cirugía , Adolescente , Adulto , Niño , Progresión de la Enfermedad , Femenino , Estudios de Seguimiento , Articulación de la Cadera/diagnóstico por imagen , Humanos , Masculino , Osteoartritis de la Cadera/diagnóstico por imagen , Osteoartritis de la Cadera/etiología , Complicaciones Posoperatorias/diagnóstico por imagen , Complicaciones Posoperatorias/etiología , Prevalencia , Índice de Severidad de la Enfermedad , Epífisis Desprendida de Cabeza Femoral/diagnóstico por imagen , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA