Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Chem Rev ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967551

RESUMEN

Anthropogenic activities related to population growth, economic development, technological advances, and changes in lifestyle and climate patterns result in a continuous increase in energy consumption. At the same time, the rare metal elements frequently deployed as catalysts in energy related processes are not only costly in view of their low natural abundance, but their availability is often further limited due to geopolitical reasons. Thus, electrochemical energy storage and conversion with earth-abundant metals, mainly in the form of single-atom catalysts (SACs), are highly relevant and timely technologies. In this review the application of earth-abundant SACs in electrochemical energy storage and electrocatalytic conversion of chemicals to fuels or products with high energy content is discussed. The oxygen reduction reaction is also appraised, which is primarily harnessed in fuel cell technologies and metal-air batteries. The coordination, active sites, and mechanistic aspects of transition metal SACs are analyzed for two-electron and four-electron reaction pathways. Further, the electrochemical water splitting with SACs toward green hydrogen fuel is discussed in terms of not only hydrogen evolution reaction but also oxygen evolution reaction. Similarly, the production of ammonia as a clean fuel via electrocatalytic nitrogen reduction reaction is portrayed, highlighting the potential of earth-abundant single metal species.

2.
Small ; 18(4): e2104628, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34894080

RESUMEN

Metal-organic frameworks (MOFs) materials constructed by the coordination chemistry of metal ions and organic ligands are important members of the crystalline materials family. Owing to their exceptional properties, for example, high porosity, tunable pore size, and large surface area, MOFs have been applied in several fields such as gas or liquid adsorbents, sensors, batteries, and supercapacitors. However, poor conductivity and low stability hamper their potential applications in several attractive fields such as energy and gas storage. The integration of MOFs with carbon nanotubes (CNTs), a well-established carbon allotrope that exhibits high conductivity and stability, has been proposed as an efficient strategy to overcome such limitations. By combining the advantages of MOFs and CNTs, a wide variety of composites can be prepared with properties superior to their parent materials. This review provides a comprehensive summary of the preparation of CNT@MOF composites and focuses on their recent applications in several important fields, such as water purification, gas storage and separation, sensing, electrocatalysis, and energy storage (supercapacitors and batteries). Future challenges and prospects for CNT@MOF composites are also discussed.


Asunto(s)
Estructuras Metalorgánicas , Nanotubos de Carbono , Conductividad Eléctrica , Iones , Estructuras Metalorgánicas/química , Metales/química
3.
Molecules ; 26(6)2021 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-33805728

RESUMEN

Hypergolic systems rely on organic fuel and a powerful oxidizer that spontaneously ignites upon contact without any external ignition source. Although their main utilization pertains to rocket fuels and propellants, it is only recently that hypergolics has been established from our group as a new general method for the synthesis of different morphologies of carbon nanostructures depending on the hypergolic pair (organic fuel-oxidizer). In search of new pairs, the hypergolic mixture described here contains polyaniline as the organic source of carbon and fuming nitric acid as strong oxidizer. Specifically, the two reagents react rapidly and spontaneously upon contact at ambient conditions to afford carbon nanosheets. Further liquid-phase exfoliation of the nanosheets in dimethylformamide results in dispersed single layers exhibiting strong Tyndall effect. The method can be extended to other conductive polymers, such as polythiophene and polypyrrole, leading to the formation of different type carbon nanostructures (e.g., photolumincent carbon dots). Apart from being a new synthesis pathway towards carbon nanomaterials and a new type of reaction for conductive polymers, the present hypergolic pairs also provide a novel set of rocket bipropellants based on conductive polymers.

4.
Photochem Photobiol Sci ; 14(3): 603-7, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25436477

RESUMEN

Photocatalytic and photoelectrocatalytic degradation of the antibacterial fluoroquinolone drug, ciprofloxacin, has been studied in the presence of nanocrystalline titania films supported on glass slides or transparent electrodes. The degradation has been examined either in pure water or in the presence of NaOH or NaCl. Titania films can photocatalytically or photoelectrocatalytically degrade ciprofloxacin. In the presence of NaOH, the degradation rate was lower than in pure water and this is explained by the fact that at high pH values attraction of ciprofloxacin to the titania surface is discouraged. In the presence of NaCl, the degradation rate was the highest, thanks to Cl-based radicals which can be photocatalytically created by interacting with photogenerated holes. Application of a forward (anodic) bias increased the photodegradation rate in the presence of both electrolytes while a reverse (cathodic) bias decreased the photodegradation rate. Electrocatalytic effects, i.e. degradation of ciprofloxacin in the dark or in the absence of a photocatalyst under an applied bias of up to ±1.0 V vs. Ag/AgCl, were not detected in the case of NaOH and were of limited importance in the case of NaCl.


Asunto(s)
Antibacterianos/química , Ciprofloxacina/química , Fotólisis , Catálisis , Electroquímica , Electrodos , Cloruro de Sodio/química , Hidróxido de Sodio/química , Propiedades de Superficie , Titanio/química
5.
Nanomaterials (Basel) ; 10(8)2020 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-32784885

RESUMEN

Herein, we present an interesting route to carbon derived from ferrocene without pyrolysis. Specifically, the direct contact of the metallocene with liquid bromine at ambient conditions released rapidly and spontaneously carbon soot, the latter containing dense spheres, nanosheets, and hollow spheres. The derived carbon carried surface C-Br bonds that permitted postfunctionalization of the solid through nucleophilic substitution. For instance, treatment with diglycolamine led to covalent attachment of the amine onto the carbon surface, thus conferring aqueous dispersability to t he solid. The dispersed solid exhibited visible photoluminescence under UV irradiation as a result of surface passivation by the amine. Hence, the present method not only allowed a rapid and spontaneous carbon formation at ambient conditions, but also surface engineering of the particles to impart new properties (e.g., photoluminescence).

6.
J Hazard Mater ; 294: 57-63, 2015 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-25855613

RESUMEN

Photocatalytic and photoelectrocatalytic degradation of the drug omeprazole has been studied in the presence of nanocrystalline titania films supported on glass slides or transparent FTO electrodes in alkaline environment. Its photocatalytic degradation rate was assessed by its UV absorbance and by HPLC, while its transformation products were analyzed by HR-LC-MS. Based on UV absorbance, omeprazole can be photocatalytically degraded at an average rate of 6.7×10(-4)min(-1) under low intensity UVA irradiation of 1.5mWcm(-2) in the presence of a nanoparticulate titania film. This corresponds to degradation of 1.4mg of omeprazole per gram of the photocatalyst per liter of solution per hour. The photodegradation rate can be accelerated in a photoelectrochemical cell by applying a forward bias. In this case, the maximum rate reached under the present conditions was 11.6×10(-4)min(-1) by applying a forward bias of +0.6V vs. Ag/AgCl. Four major transformation products were successfully identified and their profiles were followed by HR-LC-MS. The major degradation path includes the scission of the sulfoxide bridge into the corresponding pyridine and benzimidazole ring derivates and this is accompanied by the release of sulfate anions in the reaction mixture.


Asunto(s)
Nanopartículas , Omeprazol/química , Titanio , Rayos Ultravioleta , Contaminantes Químicos del Agua/química , Antiulcerosos/química , Catálisis , Electroquímica , Electrodos , Concentración de Iones de Hidrógeno , Nanopartículas/química , Nanopartículas/efectos de la radiación , Fotólisis , Inhibidores de la Bomba de Protones/química , Plata/química , Titanio/química , Titanio/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA