Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Development ; 147(19)2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32907847

RESUMEN

Pattern formation is influenced by transcriptional regulation as well as by morphogenetic mechanisms that shape organ primordia, although factors that link these processes remain under-appreciated. Here we show that, apart from their established transcriptional roles in pattern formation, IRX3/5 help to shape the limb bud primordium by promoting the separation and intercalation of dividing mesodermal cells. Surprisingly, IRX3/5 are required for appropriate cell cycle progression and chromatid segregation during mitosis, possibly in a nontranscriptional manner. IRX3/5 associate with, promote the abundance of, and share overlapping functions with co-regulators of cell division such as the cohesin subunits SMC1, SMC3, NIPBL and CUX1. The findings imply that IRX3/5 coordinate early limb bud morphogenesis with skeletal pattern formation.


Asunto(s)
Cromátides/metabolismo , Proteínas de Homeodominio/metabolismo , Esbozos de los Miembros/embriología , Esbozos de los Miembros/metabolismo , Factores de Transcripción/metabolismo , Animales , Western Blotting , Segregación Cromosómica/genética , Segregación Cromosómica/fisiología , Femenino , Técnica del Anticuerpo Fluorescente , Células HEK293 , Proteínas de Homeodominio/genética , Humanos , Inmunoprecipitación , Espectrometría de Masas , Ratones , Mitosis/genética , Mitosis/fisiología , Embarazo , RNA-Seq , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción/genética
2.
Proc Natl Acad Sci U S A ; 117(9): 4781-4791, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32071242

RESUMEN

Numerous hypotheses invoke tissue stiffness as a key parameter that regulates morphogenesis and disease progression. However, current methods are insufficient to test hypotheses that concern physical properties deep in living tissues. Here we introduce, validate, and apply a magnetic device that generates a uniform magnetic field gradient within a space that is sufficient to accommodate an organ-stage mouse embryo under live conditions. The method allows rapid, nontoxic measurement of the three-dimensional (3D) spatial distribution of viscoelastic properties within mesenchyme and epithelia. Using the device, we identify an anteriorly biased mesodermal stiffness gradient along which cells move to shape the early limb bud. The stiffness gradient corresponds to a Wnt5a-dependent domain of fibronectin expression, raising the possibility that durotaxis underlies cell movements. Three-dimensional stiffness mapping enables the generation of hypotheses and potentially the rigorous testing of mechanisms of development and disease.


Asunto(s)
Imagenología Tridimensional/métodos , Esbozos de los Miembros/diagnóstico por imagen , Esbozos de los Miembros/fisiología , Mesodermo/fisiología , Ratones/embriología , Animales , Movimiento Celular/fisiología , Epitelio , Fibronectinas , Imagenología Tridimensional/instrumentación , Morfogénesis , Proteína Wnt-5a
3.
Biophys J ; 115(12): 2443-2450, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30509858

RESUMEN

It has long been recognized that mechanical forces underlie mammalian embryonic shape changes. Before gastrulation, the blastocyst embryo undergoes significant shape changes, namely, the blastocyst cavity emerges and expands, and the inner cell mass (ICM) forms and changes in shape. The embryo's inner pressure has been hypothesized to be the driving mechanical input that causes the expansion of the blastocyst cavity and the shape changes of the ICM. However, how the inner pressure and the mechanics of the trophoblast and the ICM change during development is unknown because of the lack of a suitable tool for quantitative characterization. This work presents a laser-assisted magnetic tweezer technique for measuring the inner pressure and Young's modulus of the trophoblast and ICM of the blastocyst-stage mouse embryo. The results quantitatively showed that the inner pressure and Young's modulus of the trophoblast and ICM all increase during progression of mouse blastocysts, providing useful data for understanding how mechanical factors are physiologically integrated with other cues to direct embryo development.


Asunto(s)
Blastocisto/citología , Presión , Trofoblastos/citología , Animales , Fenómenos Biomecánicos , Ratones
4.
Biophys J ; 112(10): 2209-2218, 2017 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-28538157

RESUMEN

What motivates animal cells to intercalate is a longstanding question that is fundamental to morphogenesis. A basic mode of cell rearrangement involves dynamic multicellular structures called tetrads and rosettes. The contribution of cell-intrinsic and tissue-scale forces to the formation and resolution of these structures remains unclear, especially in vertebrates. Here, we show that Fgfr2 regulates both the formation and resolution of tetrads and rosettes in the mouse embryo, possibly in part by spatially restricting atypical protein kinase C, a negative regulator of non-muscle myosin IIB. We employ micropipette aspiration to show that anisotropic tension is sufficient to rescue the resolution, but not the formation, of tetrads and rosettes in Fgfr2 mutant limb-bud ectoderm. The findings underscore the importance of cell contractility and tissue stress to multicellular vertex formation and resolution, respectively.


Asunto(s)
Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/química , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Animales , Ectodermo/embriología , Ectodermo/metabolismo , Módulo de Elasticidad , Análisis de Elementos Finitos , Técnica del Anticuerpo Fluorescente , Miembro Anterior/embriología , Miembro Anterior/metabolismo , Ratones Transgénicos , Microscopía de Fuerza Atómica , Microscopía Confocal , Mutación , Miosina Tipo IIB no Muscular/metabolismo , Presión , Proteína Quinasa C/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Estrés Fisiológico , Tomografía Óptica
5.
Am J Hum Genet ; 88(2): 138-49, 2011 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-21276947

RESUMEN

Epilepsy is heritable, yet few causative gene mutations have been identified, and thus far no human epilepsy gene mutations have been found to produce seizures in invertebrates. Here we show that mutations in prickle genes are associated with seizures in humans, mice, and flies. We identified human epilepsy patients with heterozygous mutations in either PRICKLE1 or PRICKLE2. In overexpression assays in zebrafish, prickle mutations resulted in aberrant prickle function. A seizure phenotype was present in the Prickle1-null mutant mouse, two Prickle1 point mutant (missense and nonsense) mice, and a Prickle2-null mutant mouse. Drosophila with prickle mutations displayed seizures that were responsive to anti-epileptic medication, and homozygous mutant embryos showed neuronal defects. These results suggest that prickle mutations have caused seizures throughout evolution.


Asunto(s)
Proteínas Portadoras/genética , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Mutación/genética , Proteínas del Tejido Nervioso/genética , Convulsiones/etiología , Proteínas Supresoras de Tumor/genética , Proteínas de Pez Cebra/genética , Proteínas Adaptadoras Transductoras de Señales , Animales , Western Blotting , Encéfalo/metabolismo , Calcio/metabolismo , Drosophila melanogaster/genética , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Epilepsias Mioclónicas/genética , Femenino , Heterocigoto , Humanos , Técnicas para Inmunoenzimas , Hibridación in Situ , Proteínas con Dominio LIM , Masculino , Ratones , Ratones Noqueados , Fenotipo , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Convulsiones/metabolismo , Pez Cebra/genética
6.
Sci Adv ; 10(29): eadl6366, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028807

RESUMEN

Physical processes ultimately shape tissue during development. Two emerging proposals are that cells migrate toward stiffer tissue (durotaxis) and that the extent of cell rearrangements reflects tissue phase, but it is unclear whether and how these concepts are related. Here, we identify fibronectin-dependent tissue stiffness as a control variable that underlies and unifies these phenomena in vivo. In murine limb bud mesoderm, cells are either caged, move directionally, or intercalate as a function of their location along a stiffness gradient. A modified Landau phase equation that incorporates tissue stiffness accurately predicts cell diffusivity upon loss or gain of fibronectin. Fibronectin is regulated by WNT5A-YAP feedback that controls cell movements, tissue shape, and skeletal pattern. The results identify a key determinant of phase transition and show how fibronectin-dependent directional cell movement emerges in a mixed-phase environment in vivo.


Asunto(s)
Movimiento Celular , Fibronectinas , Mesodermo , Fibronectinas/metabolismo , Animales , Mesodermo/metabolismo , Mesodermo/citología , Ratones , Proteína Wnt-5a/metabolismo
7.
Dev Biol ; 364(2): 138-48, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22333836

RESUMEN

The establishment of trophectoderm (TE) manifests as the formation of epithelium, and is dependent on many structural and regulatory components that are commonly found and function in many epithelial tissues. However, the mechanism of TE formation is currently not well understood. Prickle1 (Pk1), a core component of the planar cell polarity (PCP) pathway, is essential for epiblast polarization before gastrulation, yet the roles of Pk family members in early mouse embryogenesis are obscure. Here we found that Pk2(-/-) embryos died at E3.0-3.5 without forming the blastocyst cavity and not maintained epithelial integrity of TE. These phenotypes were due to loss of the apical-basal (AB) polarity that underlies the asymmetric redistribution of microtubule networks and proper accumulation of AB polarity components on each membrane during compaction. In addition, we found GTP-bound active form of nuclear RhoA was decreased in Pk2(-/-) embryos during compaction. We further show that the first cell fate decision was disrupted in Pk2(-/-) embryos. Interestingly, Pk2 localized to the nucleus from the 2-cell to around the 16-cell stage despite its cytoplasmic function previously reported. Inhibiting farnesylation blocked Pk2's nuclear localization and disrupted AB cell polarity, suggesting that Pk2 farnesylation is essential for its nuclear localization and function. The cell polarity phenotype was efficiently rescued by nuclear but not cytoplasmic Pk2, demonstrating the nuclear localization of Pk2 is critical for its function.


Asunto(s)
Núcleo Celular/metabolismo , Polaridad Celular , Desarrollo Embrionario/fisiología , Proteínas con Dominio LIM/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Blastocisto/fisiología , Diferenciación Celular/genética , Núcleo Celular/genética , Desarrollo Embrionario/genética , Femenino , Gastrulación/genética , Gastrulación/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas con Dominio LIM/genética , Masculino , Proteínas de la Membrana/genética , Ratones , Prenilación/genética , Prenilación/fisiología , Proteína de Unión al GTP rhoA/fisiología
8.
Proc Natl Acad Sci U S A ; 106(34): 14426-31, 2009 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-19706528

RESUMEN

Planar cell polarity (PCP) genes are essential for establishing planar cell polarity in both invertebrate and vertebrate tissues and are known to regulate cellular morphogenesis and cell movements during development. We focused on Prickle, one of the core components of the PCP pathway, and deleted one of two mouse prickle homologous genes, mpk1. We found that the deletion of mpk1 gene resulted in early embryonic lethality, between embryonic day (E)5.5 and E6.5, associated with failure of distal visceral endoderm migration and primitive streak formation. The mpk1(-/-) epiblast tissue was disorganized, and analyses at the cellular level revealed abnormal cell shapes, mislocalized extracellular matrix (ECM) proteins, and disrupted orientation of mitotic spindles, from which loss of apico-basal (AB) polarity of epiblast cells are suspected. Furthermore, we show mpk1 genetically interacts with another core PCP gene Vangl2/stbm in the epiblast formation, suggesting that PCP components are commonly required for the establishment and/or the maintenance of epiblast AB polarity. This was further supported by our finding that overexpression of DeltaPET/LIM (DeltaP/L), a dominant-negative Pk construct, in Xenopus embryo disrupted uniform localization of an apical marker PKCzeta, and expanded the apical domain of ectoderm cells. Our results demonstrate a role for mpk1 in AB polarity formation rather than expected role as a PCP gene.


Asunto(s)
Blastocisto/metabolismo , Proteínas Portadoras/genética , Embrión de Mamíferos/metabolismo , Proteínas del Tejido Nervioso/genética , Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Blastocisto/citología , Proteínas Portadoras/metabolismo , Polaridad Celular , Citoesqueleto/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Femenino , Regulación del Desarrollo de la Expresión Génica , Inmunohistoquímica , Hibridación in Situ , Proteínas con Dominio LIM , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Mutación , Proteínas del Tejido Nervioso/metabolismo , Proteína Quinasa C/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo
9.
iScience ; 25(3): 103838, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35252804

RESUMEN

Smooth muscle guides the morphogenesis of several epithelia during organogenesis, including the mammalian airways. However, it remains unclear how airway smooth muscle differentiation is spatiotemporally patterned and whether it originates from transcriptionally distinct mesenchymal progenitors. Using single-cell RNA-sequencing of embryonic mouse lungs, we show that the pulmonary mesenchyme contains a continuum of cell identities, but no transcriptionally distinct progenitors. Transcriptional variability correlates with spatially distinct sub-epithelial and sub-mesothelial mesenchymal compartments that are regulated by Wnt signaling. Live-imaging and tension-sensors reveal compartment-specific migratory behaviors and cortical forces and show that sub-epithelial mesenchyme contributes to airway smooth muscle. Reconstructing differentiation trajectories reveals early activation of cytoskeletal and Wnt signaling genes. Consistently, Wnt activation induces the earliest stages of smooth muscle differentiation and local accumulation of mesenchymal F-actin, which influences epithelial morphology. Our single-cell approach uncovers the principles of pulmonary mesenchymal patterning and identifies a morphogenetically active mesenchymal layer that sculpts the airway epithelium.

10.
Biol Open ; 11(11)2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36350289

RESUMEN

Nuclear mechanotransduction is a growing field with exciting implications for the regulation of gene expression and cellular function. Mechanical signals may be transduced to the nuclear interior biochemically or physically through connections between the cell surface and chromatin. To define mechanical stresses upon the nucleus in physiological settings, we generated transgenic mouse strains that harbour FRET-based tension sensors or control constructs in the outer and inner aspects of the nuclear envelope. We knocked-in a published esprin-2G sensor to measure tensions across the LINC complex and generated a new sensor that links the inner nuclear membrane to chromatin. To mitigate challenges inherent to fluorescence lifetime analysis in vivo, we developed software (FLIMvivo) that markedly improves the fitting of fluorescence decay curves. In the mouse embryo, the sensors responded to cytoskeletal relaxation and stretch applied by micro-aspiration. They reported organ-specific differences and a spatiotemporal tension gradient along the proximodistal axis of the limb bud, raising the possibility that mechanical mechanisms coregulate pattern formation. These mouse strains and software are potentially valuable tools for testing and refining mechanotransduction hypotheses in vivo.


Asunto(s)
Mecanotransducción Celular , Membrana Nuclear , Ratones , Animales , Membrana Nuclear/metabolismo , Mecanotransducción Celular/fisiología , Proteínas Nucleares/genética , Cromatina/genética , Cromatina/metabolismo , Ratones Transgénicos , Programas Informáticos , Mamíferos/genética , Mamíferos/metabolismo
11.
Research (Wash D C) ; 2020: 7914074, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32666052

RESUMEN

The mechanical properties of tissues are pivotal for morphogenesis and disease progression. Recent approaches have enabled measurements of the spatial distributions of viscoelastic properties among embryonic and pathological model systems and facilitated the generation of important hypotheses such as durotaxis and tissue-scale phase transition. There likely are many unexpected aspects of embryo biomechanics we have yet to discover which will change our views of mechanisms that govern development and disease. One area in the blind spot of even the most recent approaches to measuring tissue stiffness is the potentially anisotropic nature of that parameter. Here, we report a magnetic micromanipulation device that generates a uniform magnetic field gradient within a large workspace and permits measurement of the variation of tissue stiffness along three orthogonal axes. By applying the device to the organ-stage mouse embryo, we identify spatially heterogenous and directionally anisotropic stiffness within the mandibular arch. Those properties correspond to the domain of expression and the angular distribution of fibronectin and have potential implications for mechanisms that orient collective cell movements and shape tissues during development. Assessment of anisotropic properties extends the repertoire of current methods and will enable the generation and testing of hypotheses.

12.
Nat Commun ; 10(1): 1703, 2019 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-30979871

RESUMEN

Multiple vertebrate embryonic structures such as organ primordia are composed of confluent cells. Although mechanisms that shape tissue sheets are increasingly understood, those which shape a volume of cells remain obscure. Here we show that 3D mesenchymal cell intercalations are essential to shape the mandibular arch of the mouse embryo. Using a genetically encoded vinculin tension sensor that we knock-in to the mouse genome, we show that cortical force oscillations promote these intercalations. Genetic loss- and gain-of-function approaches show that Wnt5a functions as a spatial cue to coordinate cell polarity and cytoskeletal oscillation. These processes diminish tissue rigidity and help cells to overcome the energy barrier to intercalation. YAP/TAZ and PIEZO1 serve as downstream effectors of Wnt5a-mediated actomyosin polarity and cytosolic calcium transients that orient and drive mesenchymal cell intercalations. These findings advance our understanding of how developmental pathways regulate biophysical properties and forces to shape a solid organ primordium.


Asunto(s)
Polaridad Celular , Citoesqueleto/fisiología , Mandíbula/embriología , Mandíbula/fisiología , Proteína Wnt-5a/fisiología , Citoesqueleto de Actina , Actomiosina/metabolismo , Animales , Calcio/metabolismo , Ciclo Celular , Citosol/metabolismo , Elasticidad , Células Epiteliales/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Mutación , Oscilometría , Transducción de Señal , Estrés Mecánico , Vinculina/metabolismo , Viscosidad
13.
Artículo en Inglés | MEDLINE | ID: mdl-28319333

RESUMEN

Functional annotation of mutations that cause human limb anomalies is enabled by basic developmental studies. In this study, we focus on the prepatterning stage of limb development and discuss a recent model that proposes anterior and posterior domains of the early limb bud generate two halves of the future skeleton. By comparing phenotypes in humans with those in model organisms, we evaluate whether this prepatterning concept helps to annotate human disease alleles. WIREs Dev Biol 2017, 6:e270. doi: 10.1002/wdev.270 For further resources related to this article, please visit the WIREs website.


Asunto(s)
Extremidades/embriología , Extremidades/fisiología , Regulación del Desarrollo de la Expresión Génica , Deformidades Congénitas de las Extremidades/patología , Animales , Humanos
14.
Mech Dev ; 116(1-2): 39-49, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12128204

RESUMEN

The development of avian cutaneous appendages, feathers and scales, is known to arise from the epithelial-mesenchymal interaction. Here we show that FGF10 is associated with this developmental process as an early signal from mesenchymal cells underlying nascent cutaneous placodes. Expression of Fgf10 was detected in the mesenchymal cells underneath the developing placodes. Forced expression of Fgf10 in the femoral skin suppressed expression of Shh and a zinc finger gene snail-related (cSnR), while induced expression of Bmp2 in the interbud region, resulting in thickening of the epidermal layer. Furthermore, forced expression of Fgf10 in the foot skin caused marked ingrowings of the epidermis. The cells in the epidermal ingrowings expressed beta-catenin, proliferating cell nuclear antigen, and an epidermal stem cell marker p63. These results support the idea that FGF10 is a mesenchymally derived stimulator of epidermal development through crosstalk with bone morphogenetic protein (BMP), beta-catenin, and other signaling pathways.


Asunto(s)
Factores de Crecimiento de Fibroblastos/fisiología , Proteínas de la Membrana , Piel/embriología , Factor de Crecimiento Transformador beta , Animales , Proteína Morfogenética Ósea 2 , Proteínas Morfogenéticas Óseas/genética , Embrión de Pollo , Proteínas del Citoesqueleto/metabolismo , Proteínas de Unión al ADN/genética , Plumas/embriología , Plumas/metabolismo , Factor 10 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog , Hibridación in Situ , Mesodermo/citología , Mesodermo/metabolismo , Modelos Biológicos , Fosfoproteínas/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos , Receptores de Factores de Crecimiento de Fibroblastos/genética , Transducción de Señal , Piel/metabolismo , Factores de Transcripción de la Familia Snail , Transactivadores/genética , Transactivadores/metabolismo , beta Catenina
15.
Nat Cell Biol ; 17(5): 569-79, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25893915

RESUMEN

The physical forces that drive morphogenesis are not well characterized in vivo, especially among vertebrates. In the early limb bud, dorsal and ventral ectoderm converge to form the apical ectodermal ridge (AER), although the underlying mechanisms are unclear. By live imaging mouse embryos, we show that prospective AER progenitors intercalate at the dorsoventral boundary and that ectoderm remodels by concomitant cell division and neighbour exchange. Mesodermal expansion and ectodermal tension together generate a dorsoventrally biased stress pattern that orients ectodermal remodelling. Polarized distribution of cortical actin reflects this stress pattern in a ß-catenin- and Fgfr2-dependent manner. Intercalation of AER progenitors generates a tensile gradient that reorients resolution of multicellular rosettes on adjacent surfaces, a process facilitated by ß-catenin-dependent attachment of cortex to membrane. Therefore, feedback between tissue stress pattern and cell intercalations remodels mammalian ectoderm.


Asunto(s)
Ectodermo/fisiología , Esbozos de los Miembros/fisiología , Mecanotransducción Celular , Actinas/metabolismo , Animales , Anisotropía , Comunicación Celular , División Celular , Polaridad Celular , Ectodermo/metabolismo , Técnicas de Cultivo de Embriones , Células Madre Embrionarias/fisiología , Retroalimentación , Regulación del Desarrollo de la Expresión Génica , Genotipo , Esbozos de los Miembros/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía por Video , Modelos Biológicos , Morfogénesis , Fenotipo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Estrés Mecánico , Factores de Tiempo , beta Catenina/genética , beta Catenina/metabolismo
16.
PLoS One ; 8(12): e80737, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24312498

RESUMEN

The frequent comorbidity of Autism Spectrum Disorders (ASDs) with epilepsy suggests a shared underlying genetic susceptibility; several genes, when mutated, can contribute to both disorders. Recently, PRICKLE1 missense mutations were found to segregate with ASD. However, the mechanism by which mutations in this gene might contribute to ASD is unknown. To elucidate the role of PRICKLE1 in ASDs, we carried out studies in Prickle1(+/-) mice and Drosophila, yeast, and neuronal cell lines. We show that mice with Prickle1 mutations exhibit ASD-like behaviors. To find proteins that interact with PRICKLE1 in the central nervous system, we performed a yeast two-hybrid screen with a human brain cDNA library and isolated a peptide with homology to SYNAPSIN I (SYN1), a protein involved in synaptogenesis, synaptic vesicle formation, and regulation of neurotransmitter release. Endogenous Prickle1 and Syn1 co-localize in neurons and physically interact via the SYN1 region mutated in ASD and epilepsy. Finally, a mutation in PRICKLE1 disrupts its ability to increase the size of dense-core vesicles in PC12 cells. Taken together, these findings suggest PRICKLE1 mutations contribute to ASD by disrupting the interaction with SYN1 and regulation of synaptic vesicles.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Trastornos Generalizados del Desarrollo Infantil/metabolismo , Trastornos Generalizados del Desarrollo Infantil/fisiopatología , Proteínas con Dominio LIM/metabolismo , Mutación , Sinapsinas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Conducta Animal , Trastornos Generalizados del Desarrollo Infantil/genética , Humanos , Proteínas con Dominio LIM/genética , Ratones , Ratones Mutantes , Neuronas/metabolismo , Neuronas/patología , Células PC12 , Ratas , Sinapsinas/genética , Vesículas Sinápticas/genética , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/patología , Proteínas Supresoras de Tumor/genética
17.
Dev Growth Differ ; 48(5): 339-46, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16759284

RESUMEN

Mutant mice deficient in the fibroblast growth factor 10 (Fgf10) gene exhibit an eye-open phenotype at birth. It has previously been shown that FGF10 has a dual role in proliferation and migration during the early and later stages of eyelid development, respectively. To verify the role of FGF10 during eyelid closure, explant culture of Fgf10-null eyelid anlagen was performed, by which it was examined whether or not exogenous FGF10 could rescue the expression of activin betaB and transforming growth factor alpha, known to be required for eyelid closure. We found that the expression of these genes was markedly induced while that of Shh or Ptch1, Ptch2 was not. We also observed the distribution of filamentous actin (F-actin) after FGF10 application in the mutant eyelid explant, finding that the FGF10 protein induced F-actin accumulation. We further examined filopodia of the eyelid leading edge cells, finding the length of the filopodia was significantly reduced in the mutant. These results verify that FGF10 promotes eyelid closure through activating activin and TGFalpha-EGFR signaling.


Asunto(s)
Párpados/embriología , Factor 10 de Crecimiento de Fibroblastos/fisiología , Transducción de Señal , Actinas/metabolismo , Activinas/metabolismo , Animales , Células Epiteliales , Receptores ErbB/metabolismo , Párpados/efectos de los fármacos , Femenino , Feto , Factor 10 de Crecimiento de Fibroblastos/genética , Factor 10 de Crecimiento de Fibroblastos/farmacología , Proteínas Hedgehog , Masculino , Ratones , Ratones Noqueados , Técnicas de Cultivo de Órganos , Fenotipo , Seudópodos/ultraestructura , Transactivadores/metabolismo , Factor de Crecimiento Transformador alfa/metabolismo
18.
Development ; 132(14): 3217-30, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15958512

RESUMEN

The development of the eyelid requires coordinated cellular processes of proliferation, cell shape changes, migration and cell death. Mutant mice deficient in the fibroblast growth factor 10 (Fgf10) gene exhibit open-eyelids at birth. To elucidate the roles of FGF10 during eyelid formation, we examined the expression pattern of Fgf10 during eyelid formation and the phenotype of Fgf10-null eyelids in detail. Fgf10 is expressed by mesenchymal cells just beneath the protruding epidermal cells of the nascent eyelid. However, Fgf10-null epithelial cells running though the eyelid groove do not exhibit typical cuboid shape or sufficient proliferation. Furthermore, peridermal clumps are not maintained on the eyelid leading edge, and epithelial extension does not occur. At the cellular level, the accumulation of actin fibers is not observed in the mutant epithelial leading edge. The expression of activin/inhibin betaB (ActbetaB/Inhbb) and transforming growth factor alpha (Tgfa), previously reported to be crucial for eyelid development, is down-regulated in the mutant leading edge, while the onset of sonic hedgehog (Shh) expression is delayed on the mutant eyelid margin. Explant cultures of mouse eyelid primordia shows that the open-eyelid phenotype of the mutant is reduced by exogenous FGF10 protein, and that the expression of ActbetaB and Tgfa is ectopically induced in the thickened eyelid epithelium by the FGF10 protein. These results indicate a dual role of FGF10 in mouse eyelid development, for both proliferation and coordinated migration of eyelid epithelial cells by reorganization of the cytoskeleton, through the regulation of activin, TGFalpha and SHH signaling.


Asunto(s)
Movimiento Celular/fisiología , Proliferación Celular , Células Epiteliales/metabolismo , Párpados/embriología , Factores de Crecimiento de Fibroblastos/fisiología , Actinas/metabolismo , Animales , Movimiento Celular/genética , Factor 10 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/biosíntesis , Factores de Crecimiento de Fibroblastos/genética , Proteínas Hedgehog , Queratinocitos/citología , Queratinocitos/fisiología , Mesodermo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Noqueados , Seudópodos/fisiología , Transactivadores/metabolismo , Factor de Crecimiento Transformador alfa/biosíntesis , Factor de Crecimiento Transformador alfa/genética
19.
Biochem Biophys Res Commun ; 302(3): 562-7, 2003 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-12615071

RESUMEN

Fibroblast Growth Factor (FGF) signaling is known to play an important role during cutaneous development. To elucidate the role of FGF10 during whisker formation, we examined the expression of Fgf10 in normal developing whiskers and phenotypes of Fgf10-deficient whiskers. Fgf10 is first expressed in the maxillary process, lateral and medial nasal processes, then in the mesenchymal cells underneath the future whisker placodes, and in the surrounding mesenchyme of developing whiskers. Fgf10-null whiskers exhibit a significant decrease in number and their structure is disorganized as revealed by scanning electron microscopy. Hair follicle marker genes such as Sonic hedgehog, Patched, and Patched 2 are aberrantly expressed in the mutant whiskers. Thus, FGF10 is required for proper whisker development mediated by SHH signaling in the mouse.


Asunto(s)
Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/fisiología , Vibrisas/embriología , Animales , Factor 10 de Crecimiento de Fibroblastos , Proteínas Hedgehog , Mesodermo/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Microscopía Electrónica de Rastreo , Fenotipo , Transducción de Señal , Factores de Tiempo , Transactivadores/metabolismo , Vibrisas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA