Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 269: 115767, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38039851

RESUMEN

Inhaling silica causes the occupational illness silicosis, which mostly results in the gradual fibrosis of lung tissue. Previous research has demonstrated that hypoxia-inducible factor-1α (HIF-1α) and glycolysis-related genes are up-regulated in silicosis. The role of 2-deoxy-D-glucose (2-DG) as an inhibitor of glycolysis in silicosis mouse models and its molecular mechanisms remain unclear. Therefore, we used 2-DG to observe its effect on pulmonary inflammation and fibrosis in a silicosis mouse model. Furthermore, in vitro cell experiments were conducted to explore the specific mechanisms of HIF-1α. Our study found that 2-DG down-regulated HIF-1α levels in alveolar macrophages induced by silica exposure and reduced the interleukin-1ß (IL-1ß) level in pulmonary inflammation. Additionally, 2-DG reduced silica-induced pulmonary fibrosis. From these findings, we hypothesize that 2-DG reduced glucose transporter 1 (GLUT1) expression by inhibiting glycolysis, which inhibits the expression of HIF-1α and ultimately reduces transcription of the inflammatory cytokine, IL-1ß, thus alleviating lung damage. Therefore, we elucidated the important regulatory role of HIF-1α in an experimental silicosis model and the potential defense mechanisms of 2-DG. These results provide a possible effective strategy for 2-DG in the treatment of silicosis.


Asunto(s)
Neumonía , Fibrosis Pulmonar , Silicosis , Animales , Ratones , Desoxiglucosa/farmacología , Desoxiglucosa/metabolismo , Glucosa/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/efectos de los fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Inflamación/metabolismo , Macrófagos Alveolares , Neumonía/metabolismo , Fibrosis Pulmonar/metabolismo , Dióxido de Silicio/toxicidad , Silicosis/tratamiento farmacológico , Silicosis/metabolismo
2.
Ecotoxicol Environ Saf ; 271: 115972, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38218105

RESUMEN

Coal worker's pneumoconiosis (CWP) is a common occupational disease that coal miners are highly susceptible due to long-term exposure to coal dust particles (CDP). CWP can induce the accumulation of immune cells surrounding the bronchioles and alveoli in the lungs, resulting in pulmonary fibrosis and compromised immune function. Using single-cell RNA sequencing (scRNA-Seq), our previous studies disclose that CDP exposure triggers heterogeneity of transcriptional profiles in mouse pneumoconiosis, while Vitamin D3 (VitD3) supplementation reduces CDP-induced cytotoxicity; however, the mechanism by which how VitD3 regulates immune status in coal pneumoconiosis remains unclear. In this study, we elucidated the heterogeneity of pulmonary lymphocytes in mice exposed to CDP and demonstrated the therapeutic efficacy of VitD3 using scRNA-Seq dataset. The validation of key lymphocyte markers and their functional molecules was performed using immunofluorescence. The results demonstrated that VitD3 increased the number of naive T cells by modulating CD4 + T cell differentiation and decreased the number of Treg cells in CDP-exposed mice, thereby enhancing the cytotoxic activity of CD8 + effector T cells. These effects markedly alleviated lung fibrosis and symptoms. Taken together, the mechanism by which VitD3 regulates the functions of lymphocytes in CWP provides a new perspective for further research on the prevention and treatment of CWP.


Asunto(s)
Antracosis , Minas de Carbón , Neumoconiosis , Fibrosis Pulmonar , Animales , Ratones , Neumoconiosis/diagnóstico , Fibrosis Pulmonar/inducido químicamente , Carbón Mineral , Tolerancia Inmunológica
3.
Ecotoxicol Environ Saf ; 273: 116079, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38377778

RESUMEN

Nicotine, an addictive component of cigarettes, causes cognitive defects, particularly when exposure occurs early in life. However, the exact mechanism through which nicotine causes toxicity and alters synaptic plasticity is still not fully understood. The aim of the current study is to examine how non-coding developmental regulatory RNA impacts the hippocampus of mice offspring whose mothers were exposed to nicotine. Female C57BL/6J mice were given nicotine water from one week before pregnancy until end of lactation. Hippocampal tissue from offspring at 20 days post-birth was used for LncRNA and mRNA microarray analysis. Differential expression of LncRNAs and mRNAs associated with neuronal development were screened and validated, and the CeRNA pathway mediating neuronal synaptic plasticity GM13530/miR-7119-3p/mef2c was predicted using LncBase Predicted v.2. Using protein immunoblotting, Golgi staining and behavioral tests, our findings revealed that nicotine exposure in offspring mice increased hippocampal NMDAR receptor, activated receptor-dependent calcium channels, enhanced the formation of NMDAR/nNOS/PSD95 ternary complexes, increased NO synthesis, mediated p38 activation, induced neuronal excitability toxicity. Furthermore, an epigenetic CeRNA regulatory mechanism was identified, which suppresses Mef2c-mediated synaptic plasticity and leads to modifications in the learning and social behavior of the offspring during adolescence. This study uncovers the way in which maternal nicotine exposure results in neurotoxicity in offspring.


Asunto(s)
Nicotina , Efectos Tardíos de la Exposición Prenatal , Embarazo , Humanos , Ratones , Animales , Femenino , Nicotina/toxicidad , Nicotina/metabolismo , ARN Endógeno Competitivo , Efectos Tardíos de la Exposición Prenatal/genética , Efectos Tardíos de la Exposición Prenatal/metabolismo , Ratones Endogámicos C57BL , Exposición Materna/efectos adversos , Hipocampo/metabolismo
4.
Ecotoxicol Environ Saf ; 249: 114359, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36508797

RESUMEN

Silicosis is a diffuse fibrotic lung disease in which excessive inflammatory responses are triggered by silica exposure. Pyroptosis, a pro-inflammatory mode of programmed cell death, is mediated by gasdermin and may play a pivotal role in the development of silicosis. The caspase-1 inhibitor, VX-765, was used in vivo and in vitro to investigate the effects of silica-induced early inflammatory injury and later lung fibrosis. Our findings show that VX-765 reduces inflammatory lung injury by inhibiting silica-induced pyroptosis of alveolar macrophages in a silicosis mouse model. VX-765 limits the infiltration of inflammatory M1 alveolar macrophages, decreasing expression of inflammatory cytokines, including IL-1ß, TNF-α, IL-6, CCL2, and CCL3, and down-regulating endogenous DAMPs and inflammatory immune-related cell pattern recognition receptors TLR4 and NLRP3. Furthermore, VX-765 alleviates fibrosis by down-regulating α-smooth muscle actin (α-SMA), collagen, and fibronectin. In this study, we illustrate that Alveolar macrophages pyroptosis occur in the early stages of silicosis, and VX-765 can alleviate the development of silicosis by inhibiting the pyroptosis signaling pathway. These results may provide new insight into the prevention and treatment of early-stage silicosis.


Asunto(s)
Inhibidores de Caspasas , Lesión Pulmonar , Fibrosis Pulmonar , Piroptosis , Silicosis , Animales , Ratones , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/tratamiento farmacológico , Lesión Pulmonar/patología , Macrófagos Alveolares/efectos de los fármacos , Piroptosis/efectos de los fármacos , Dióxido de Silicio/toxicidad , Silicosis/tratamiento farmacológico , Inhibidores de Caspasas/farmacología , Inhibidores de Caspasas/uso terapéutico , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico
5.
Biochem Biophys Res Commun ; 606: 114-120, 2022 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-35344708

RESUMEN

Silicosis is an occupational disease that seriously damages the life and health of miners. Herein, we constructed a mouse model of silicosis and used label-free confocal Raman spectroscopy to analyze the biomolecular variations in lung fibrous nodules and inflammatory sites. The mice were exposed to silica particles for 1 month (SIL-1M group), 3 months (SIL-3M group), or no exposure (control tissues, NS). Raman spectra obtained from treated and untreated lung tissue were subjected to chemometric analysis to quantify biochemical composition differences in the silicosis. Simultaneously, immunohistochemistry and collagen staining were used to evaluate inflammation, fibrosis, and apoptosis. As a result, the SIL-1M and SIL-3M groups showed significant differences in cholesterol, lipids, amino acids, nucleic acids, and cytochrome C, and the collagen peaks at 1248 cm-1 and 1448 cm-1 were significantly higher than in the NS group. Notably, glycogen and phospholipid may be an inflammatory indicator consistent with NF-κB expression. In addition, significant differences in collagen and cytochrome C content in silicosis lung tissue were found using Raman spectroscopy and were verified by Masson's staining and Bax/Bcl-2 expression ratio. In summary, our findings provide a label-free technique to understand the biochemical changes in lung inflammatory and fibrosis microenvironment after exposure to silica particles and provide a valuable reference for studying the mechanism of silicosis.


Asunto(s)
Silicosis , Espectrometría Raman , Animales , Citocromos c/metabolismo , Modelos Animales de Enfermedad , Fibrosis , Inflamación/patología , Pulmón/patología , Ratones , Dióxido de Silicio/metabolismo , Dióxido de Silicio/toxicidad
6.
Part Fibre Toxicol ; 19(1): 7, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35057792

RESUMEN

BACKGROUND: Coal dust particles (CDP), an inevitable by-product of coal mining for the environment, mainly causes coal workers' pneumoconiosis (CWP). Long-term exposure to coal dust leads to a complex alternation of biological processes during regeneration and repair in the healing lung. However, the cellular and complete molecular changes associated with pulmonary homeostasis caused by respiratory coal dust particles remain unclear. METHODS: This study mainly investigated the pulmonary toxicity of respirable-sized CDP in mice using unbiased single-cell RNA sequencing. CDP (< 5 µm) collected from the coal mine was analyzed by Scanning Electron Microscope (SEM) and Mass Spectrometer. In addition, western blotting, Elisa, QPCR was used to detect gene expression at mRNA or protein levels. Pathological analysis including HE staining, Masson staining, immunohistochemistry, and immunofluorescence staining were performed to characterize the structure and functional alternation in the pneumoconiosis mouse and verify the reliability of single-cell sequencing results. RESULTS: SEM image and Mass Spectrometer analysis showed that coal dust particles generated during coal mine production have been crushed and screened with a diameter of less than 5 µm and contained less than 10% silica. Alveolar structure and pulmonary microenvironment were destroyed, inflammatory and death (apoptosis, autophagy, and necrosis) pathways were activated, leading to pneumoconiosis in post 9 months coal dust stimulation. A distinct abnormally increased alveolar type 2 epithelial cell (AT2) were classified with a highly active state but reduced the antimicrobial-related protein expression of LYZ and Chia1 after CDP exposure. Beclin1, LC3B, LAMP2, TGF-ß, and MLPH were up-regulated induced by CDP, promoting autophagy and pulmonary fibrosis. A new subset of macrophages with M2-type polarization double expressed MLPH + /CD206 + was found in mice having pneumoconiosis but markedly decreased after the Vitamin D treatment. Activated MLPH + /CD206 + M2 macrophages secreted TGF-ß1 and are sensitive to Vitamin D treatment. CONCLUSIONS: This is the first study to reconstruct the pathologic progression and transcriptome pattern of coal pneumoconiosis in mice. Coal dust had obvious toxic effects on lung epithelial cells and macrophages and eventually induced pulmonary fibrosis. CDP-induced M2-type macrophages could be inhibited by VD, which may be related to the alleviation of the pulmonary fibrosis process.


Asunto(s)
Minas de Carbón , Neumoconiosis , Fibrosis Pulmonar , Proteínas Adaptadoras Transductoras de Señales , Animales , Carbón Mineral/toxicidad , Polvo , Ratones , Reproducibilidad de los Resultados , Vitamina D
7.
Ecotoxicol Environ Saf ; 242: 113913, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35907323

RESUMEN

Long-term coal dust exposure triggers complex inflammatory processes in the coal workers' pneumoconiosis (CWP) lungs. The progress of the inflammation is reported to be affected by disordered cell metabolism. However, the changes in the metabolic reprogramming associated with the pulmonary inflammation induced by the coal dust particles are unknown. Herein, we show that coal dust exposure causes glycogen accumulation and the reprogramming of glucose metabolism in the CWP lung. The glycogen accumulation caused by coal dust is mainly due to macrophages, which reprogram glycogen metabolism and trigger an inflammatory response. In addition, 2-deoxy-D-glucose (2-DG) reduced glycogen content in macrophages, which was accompanied by mitigated inflammation and restrained NF-κB activation. Accordingly, we have pinpointed a novel and crucial metabolic pathway that is an essential regulator of the inflammatory phenotype of coal dust-exposed macrophages. These results shed light on new ways to regulate CWP inflammation.


Asunto(s)
Antracosis , Minas de Carbón , Neumoconiosis , Carbón Mineral/efectos adversos , Minas de Carbón/métodos , Polvo , Glucógeno , Humanos , Inflamación , Pulmón , Minerales
8.
Wei Sheng Yan Jiu ; 48(6): 970-975, 2019 Nov.
Artículo en Zh | MEDLINE | ID: mdl-31875824

RESUMEN

OBJECTIVE: To inquiry the effects of cigarette smoke extract(CSE) on RAW264. 7 cell proliferation, autophagy and its mechanism. METHODS: RAW264. 7 cell were used and divided into control, starvation and CSE group(2%, 3%, 4%, 5%CSE). CCK-8 was used to detect the toxic action of CSE on RAW264. 7 cell. Western blot and mRFP-GFP-LC3 cell fluorescence spot count were used to explore the function of CSE on RAW264. 7 cell autophagy and its mechanism. RESULTS: Compared with the control group, the result of CCK-8(0. 671 ± 0. 03、0. 746± 0. 10、0. 584 ± 0. 07、0. 588±0. 05) showed that CSE inhibit the proliferation of RAW 264. 7 cell on 24 hours, the difference was statistically significant(P < 0. 05). The outcomes of Western blot showed that, compared with the control group, LC3 B in the CSE group increased, difference in 6(6. 612 ± 0. 35)/12(4. 383 ± 1. 99)/24(5. 781 ± 0. 78) hours, while P62 decreased in 6(1. 815±0. 08)/12(4. 383±1. 99)/24(0. 414±0. 06) hours also different, P-mTOR(1. 744 ± 0. 15) and P-AKT(0. 376 ± 0. 03) decreased, the difference was statistically significant(P<0. 05), but Beclin1 was not significantly changed. The mRFP-GFP-LC3 cell fluorescence spot count showed that the green fluorescence spot(GFP)decreased and the red fluorescence spot(mRFP) remained stable in CSE group, combined mRFP-GFP is shown as yellow and red spots. CONCLUSION: CSE has toxic effect on cell proliferation and leads to RAW264. 7 cell autophagy enhanced through AKT/m TOR pathways.


Asunto(s)
Autofagia , Fumar , Proliferación Celular , Extractos Vegetales , Humo
9.
J Virol ; 90(1): 57-67, 2016 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-26446606

RESUMEN

UNLABELLED: Characterized animal models are needed for studying the pathogenesis of and evaluating medical countermeasures for persisting Middle East respiratory syndrome-coronavirus (MERS-CoV) infections. Here, we further characterized a lethal transgenic mouse model of MERS-CoV infection and disease that globally expresses human CD26 (hCD26)/DPP4. The 50% infectious dose (ID50) and lethal dose (LD50) of virus were estimated to be <1 and 10 TCID50 of MERS-CoV, respectively. Neutralizing antibody developed in the surviving mice from the ID50/LD50 determinations, and all were fully immune to challenge with 100 LD50 of MERS-CoV. The tissue distribution and histopathology in mice challenged with a potential working dose of 10 LD50 of MERS-CoV were subsequently evaluated. In contrast to the overwhelming infection seen in the mice challenged with 10(5) LD50 of MERS-CoV, we were able to recover infectious virus from these mice only infrequently, although quantitative reverse transcription-PCR (qRT-PCR) tests indicated early and persistent lung infection and delayed occurrence of brain infection. Persistent inflammatory infiltrates were seen in the lungs and brain stems at day 2 and day 6 after infection, respectively. While focal infiltrates were also noted in the liver, definite pathology was not seen in other tissues. Finally, using a receptor binding domain protein vaccine and a MERS-CoV fusion inhibitor, we demonstrated the value of this model for evaluating vaccines and antivirals against MERS. As outcomes of MERS-CoV infection in patients differ greatly, ranging from asymptomatic to overwhelming disease and death, having available both an infection model and a lethal model makes this transgenic mouse model relevant for advancing MERS research. IMPORTANCE: Fully characterized animal models are essential for studying pathogenesis and for preclinical screening of vaccines and drugs against MERS-CoV infection and disease. When given a high dose of MERS-CoV, our transgenic mice expressing hCD26/DPP4 viral receptor uniformly succumbed to death within 6 days, making it difficult to evaluate host responses to infection and disease. We further characterized this model by determining both the ID50 and the LD50 of MERS-CoV in order to establish both an infection model and a lethal model for MERS and followed this by investigating the antibody responses and immunity of the mice that survived MERS-CoV infection. Using the estimated LD50 and ID50 data, we dissected the kinetics of viral tissue distribution and pathology in mice challenged with 10 LD50 of virus and utilized the model for preclinical evaluation of a vaccine and drug for treatment of MERS-CoV infection. This further-characterized transgenic mouse model will be useful for advancing MERS research.


Asunto(s)
Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Modelos Animales de Enfermedad , Coronavirus del Síndrome Respiratorio de Oriente Medio/crecimiento & desarrollo , Estructuras Animales/patología , Estructuras Animales/virología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Antivirales/administración & dosificación , Encéfalo/patología , Encéfalo/virología , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/prevención & control , Evaluación Preclínica de Medicamentos/métodos , Histocitoquímica , Humanos , Dosificación Letal Mediana , Hígado/patología , Hígado/virología , Pulmón/patología , Pulmón/virología , Ratones Transgénicos , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Análisis de Supervivencia , Resultado del Tratamiento , Vacunas Virales/administración & dosificación , Vacunas Virales/inmunología
10.
J Virol ; 89(7): 3659-70, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25589660

RESUMEN

UNLABELLED: The emergence of Middle East respiratory syndrome-coronavirus (MERS-CoV) in the Middle East since 2012 has caused more than 900 human infections with ∼40% mortality to date. Animal models are needed for studying pathogenesis and for development of preventive and therapeutic agents against MERS-CoV infection. Nonhuman primates (rhesus macaques and marmosets) are expensive models of limited availability. Although a mouse lung infection model has been described using adenovirus vectors expressing human CD26/dipeptidyl peptidase 4 (DPP4), it is believed that a transgenic mouse model is needed for MERS-CoV research. We have developed this transgenic mouse model as indicated in this study. We show that transgenic mice globally expressing hCD26/DPP4 were fully permissive to MERS-CoV infection, resulting in relentless weight loss and death within days postinfection. High infectious virus titers were recovered primarily from the lungs and brains of mice at 2 and 4 days postinfection, respectively, whereas viral RNAs were also detected in the heart, spleen, and intestine, indicating a disseminating viral infection. Infected Tg(+) mice developed a progressive pneumonia, characterized by extensive inflammatory infiltration. In contrast, an inconsistent mild perivascular cuffing was the only pathological change associated with the infected brains. Moreover, infected Tg(+) mice were able to activate genes encoding for many antiviral and inflammatory mediators within the lungs and brains, coinciding with the high levels of viral replication. This new and unique transgenic mouse model will be useful for furthering knowledge of MERS pathogenesis and for the development of vaccine and treatments against MERS-CoV infection. IMPORTANCE: Small and economical animal models are required for the controlled and extensive studies needed for elucidating pathogenesis and development of vaccines and antivirals against MERS. Mice are the most desirable small-animal species for this purpose because of availability and the existence of a thorough knowledge base, particularly of genetics and immunology. The standard small animals, mice, hamsters, and ferrets, all lack the functional MERS-CoV receptor and are not susceptible to infection. So, initial studies were done with nonhuman primates, expensive models of limited availability. A mouse lung infection model was described where a mouse adenovirus was used to transfect lung cells for receptor expression. Nevertheless, all generally agree that a transgenic mouse model expressing the DPP4 receptor is needed for MERS-CoV research. We have developed this transgenic mouse model as indicated in this study. This new and unique transgenic mouse model will be useful for furthering MERS research.


Asunto(s)
Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Modelos Animales de Enfermedad , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Estructuras Animales/virología , Animales , Dipeptidil Peptidasa 4/biosíntesis , Dipeptidil Peptidasa 4/genética , Expresión Génica , Humanos , Ratones Transgénicos , Factores de Tiempo , Carga Viral
11.
J Virol ; 88(7): 3902-10, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24453361

RESUMEN

The outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) infections and diseases represents a potential threat for worldwide spread and requires development of effective therapeutic strategies. In this study, we revealed a novel positive function of an exchange protein directly activated by cyclic AMP 1 (cAMP-1; Epac-1) on MERS-CoV replication. Specifically, we have shown that Epac-specific inhibitor treatment or silencing Epac-1 gene expression rendered cells resistant to viral infection. We believe Epac-1 inhibitors deserve further study as potential therapeutic agents for MERS-CoV infection.


Asunto(s)
Coronavirus/efectos de los fármacos , Coronavirus/fisiología , AMP Cíclico/metabolismo , Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Interacciones Huésped-Patógeno , Replicación Viral/efectos de los fármacos , Animales , Línea Celular , Chlorocebus aethiops , Técnicas de Silenciamiento del Gen , Factores de Intercambio de Guanina Nucleótido/genética , Humanos
12.
J Virol ; 88(12): 7045-53, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24719424

RESUMEN

UNLABELLED: Prophylactic and therapeutic strategies are urgently needed to combat infections caused by the newly emerged Middle East respiratory syndrome coronavirus (MERS-CoV). Here, we have developed a neutralizing monoclonal antibody (MAb), designated Mersmab1, which potently blocks MERS-CoV entry into human cells. Biochemical assays reveal that Mersmab1 specifically binds to the receptor-binding domain (RBD) of the MERS-CoV spike protein and thereby competitively blocks the binding of the RBD to its cellular receptor, dipeptidyl peptidase 4 (DPP4). Furthermore, alanine scanning of the RBD has identified several residues at the DPP4-binding surface that serve as neutralizing epitopes for Mersmab1. These results suggest that if humanized, Mersmab1 could potentially function as a therapeutic antibody for treating and preventing MERS-CoV infections. Additionally, Mersmab1 may facilitate studies of the conformation and antigenicity of MERS-CoV RBD and thus will guide rational design of MERS-CoV subunit vaccines. IMPORTANCE: MERS-CoV is spreading in the human population and causing severe respiratory diseases with over 40% fatality. No vaccine is currently available to prevent MERS-CoV infections. Here, we have produced a neutralizing monoclonal antibody with the capacity to effectively block MERS-CoV entry into permissive human cells. If humanized, this antibody may be used as a prophylactic and therapeutic agent against MERS-CoV infections. Specifically, when given to a person (e.g., a patient's family member or a health care worker) either before or after exposure to MERS-CoV, the humanized antibody may prevent or inhibit MERS-CoV infection, thereby stopping the spread of MERS-CoV in humans. This antibody can also serve as a useful tool to guide the design of effective MERS-CoV vaccines.


Asunto(s)
Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/química , Infecciones por Coronaviridae/virología , Coronaviridae/fisiología , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Glicoproteína de la Espiga del Coronavirus/química , Animales , Anticuerpos Neutralizantes/farmacología , Anticuerpos Antivirales/farmacología , Coronaviridae/química , Coronaviridae/efectos de los fármacos , Coronaviridae/genética , Infecciones por Coronaviridae/enzimología , Infecciones por Coronaviridae/genética , Dipeptidil Peptidasa 4/genética , Dipeptidil Peptidasa 4/metabolismo , Mapeo Epitopo , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Unión Proteica , Estructura Terciaria de Proteína , Receptores Virales/genética , Receptores Virales/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus/efectos de los fármacos
13.
J Virol ; 87(17): 9953-8, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23824802

RESUMEN

The newly emerged Middle East respiratory syndrome coronavirus (MERS-CoV) infects human bronchial epithelial Calu-3 cells. Unlike severe acute respiratory syndrome (SARS)-CoV, which exclusively infects and releases through the apical route, this virus can do so through either side of polarized Calu-3 cells. Infection results in profound apoptosis within 24 h irrespective of its production of titers that are lower than those of SARS-CoV. Together, our results provide new insights into the dissemination and pathogenesis of MERS-CoV and may indicate that the virus differs markedly from SARS-CoV.


Asunto(s)
Bronquios/virología , Coronavirus/fisiología , Coronavirus/patogenicidad , Apoptosis , Bronquios/patología , Línea Celular , Polaridad Celular , Efecto Citopatogénico Viral/fisiología , Células Epiteliales/patología , Células Epiteliales/virología , Humanos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , Especificidad de la Especie , Internalización del Virus , Liberación del Virus/fisiología
14.
CNS Neurosci Ther ; 30(4): e14508, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-37864452

RESUMEN

AIMS: Exposure to crystalline silica (CS) in occupational settings induces chronic inflammation in the respiratory system and, potentially, the brain. Some workers are frequently concurrently exposed to both CS and nicotine. Here, we explored the impact of nicotine on CS-induced neuroinflammation in the mouse hippocampus. METHODS: In this study, we established double-exposed models of CS and nicotine in C57BL/6 mice. To assess depression-like behavior, experiments were conducted at 3, 6, and 9 weeks. Serum inflammatory factors were analyzed by ELISA. Hippocampus was collected for RNA sequencing analysis and examining the gene expression patterns linked to inflammation and cell death. Microglia and astrocyte activation and hippocampal neuronal death were assessed using immunohistochemistry and immunofluorescence staining. Western blotting was used to analyze the NF-κB expression level. RESULTS: Mice exposed to CS for 3 weeks showed signs of depression. This was accompanied by elevated IL-6 in blood, destruction of the blood-brain barrier, and activation of astrocytes caused by an increased NF-κB expression in the CA1 area of the hippocampus. The elevated levels of astrocyte-derived Lcn2 and upregulated genes related to inflammation led to higher neuronal mortality. Moreover, nicotine mitigated the NF-κB expression, astrocyte activation, and neuronal death, thereby ameliorating the associated symptoms. CONCLUSION: Silica exposure induces neuroinflammation and neuronal death in the mouse hippocampal CA1 region and depressive behavior. However, nicotine inhibits CS-induced neuroinflammation and neuronal apoptosis, alleviating depressive-like behaviors in mice.


Asunto(s)
FN-kappa B , Nicotina , Ratones , Animales , FN-kappa B/metabolismo , Nicotina/farmacología , Nicotina/metabolismo , Astrocitos/metabolismo , Enfermedades Neuroinflamatorias , Ratones Endogámicos C57BL , Hipocampo/metabolismo , Región CA1 Hipocampal/metabolismo , Inflamación/metabolismo , Apoptosis , Microglía/metabolismo
15.
J Vis Exp ; (193)2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36939260

RESUMEN

Smoking and exposure to silica are common among occupational workers, and silica is more likely to injure the lungs of smokers than non-smokers. The role of nicotine, the primary addictive ingredient in cigarettes, in silicosis development is unclear. The mouse model employed in this study was simple and easily controlled, and it effectively simulated the effects of chronic nicotine ingestion and repeated exposure to silica on lung fibrosis through epithelial-mesenchymal transition in human beings. In addition, this model can help in the direct study of the effects of nicotine on silicosis while avoiding the effects of other components in cigarette smoke. After environmental adaptation, mice were injected subcutaneously with 0.25 mg/kg nicotine solution into the loose skin over the neck every morning and evening at 12 h intervals over 40 days. Additionally, crystalline silica powder (1-5 µm) was suspended in normal saline, diluted to a suspension of 20 mg/mL, and dispersed evenly using an ultrasonic water bath. The isoflurane-anesthetized mice inhaled 50 µL of this silica dust suspension through the nose and were awoken via chest massage. Silica exposure was administrated daily on days 5-19. The double-exposed mouse model was exposed to nicotine and then silica, which matches the exposure history of workers who are exposed to both harmful factors. In addition, nicotine promoted pulmonary fibrosis through epithelial-mesenchymal transformation (EMT) in mice. This animal model can be used to study the effects of multiple factors on the development of silicosis.


Asunto(s)
Fibrosis Pulmonar , Silicosis , Humanos , Ratones , Animales , Dióxido de Silicio , Nicotina/efectos adversos , Transición Epitelial-Mesenquimal , Pulmón/patología , Silicosis/etiología , Silicosis/patología , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/patología , Modelos Animales de Enfermedad
16.
J Vis Exp ; (191)2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36688556

RESUMEN

Silicosis can be caused by exposure to respiratory crystalline silica dust (CSD) in an industrial environment. The pathophysiology, screening, and treatment of silicosis in humans have all been extensively studied using the mouse silicosis model. By repeatedly making mice inhale CSD into their lungs, the mice can mimic the clinical symptoms of human silicosis. This methodology is practical and efficient in terms of time and output and does not cause mechanical injury to the upper respiratory tract due to surgery. Furthermore, this model can successfully mimic acute/chronic transformation process of silicosis. The main procedures were as follows. The sterilized 1-5 µm CSD powder was fully ground, suspended in saline, and dispersed in an ultrasonic water bath for 30 min. Mice under isoflurane-induced anesthesia switched from shallow rapid breathing to deep, slow aspiration for approximately 2 s. The mouse was placed in the palm of a hand, and the thumb tip gently touched the lip edge of the mouse's jaw to straighten the airway. After each exhalation, the mice breathed in the silica suspension drop by drop through one nostril, completing the process within 4-8 s. After the mice's breathing had stabilized, their chest was stroked and caressed to prevent the inhaled CSD from being coughed up. The mice were then returned to the cage. In conclusion, this model can quantify CSD along the typical physiological passage of tiny particles into the lung, from the upper respiratory tract to the terminal bronchioles and alveoli. It can also replicate the recurrent exposure of employees due to work. The model can be performed by one person and does not need expensive equipment. It conveniently and effectively simulates the disease features of human silicosis with high repeatability.


Asunto(s)
Silicosis , Humanos , Ratones , Animales , Silicosis/etiología , Pulmón , Dióxido de Silicio , Alveolos Pulmonares , Polvo , Modelos Animales de Enfermedad
17.
Food Chem Toxicol ; 175: 113694, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36868510

RESUMEN

The addictive substance nicotine, found in cigarettes and some e-cigarettes, plays a vital role in pro-inflammatory and fibrotic processes. However, the part played by nicotine in the progression of silica-induced pulmonary fibrosis is poorly understood. We used mice exposed to both silica and nicotine to investigate whether nicotine synergizes with silica particles to worsen lung fibrosis. The results revealed that nicotine accelerated the development of pulmonary fibrosis in silica-injured mice by activating STAT3-BDNF-TrkB signalling. Mice with a history of exposure to nicotine showed an increase in Fgf7 expression and alveolar type II cell proliferation if they were also exposed to silica. However, newborn AT2 cells could not regenerate the alveolar structure and release pro-fibrotic factor IL-33. Moreover, activated TrkB induced the expression of p-AKT, which promotes the expression of epithelial-mesenchymal transcription factor Twist, but no Snail. In vitro assessment confirmed activation of the STAT3-BDNF-TrkB pathway in AT2 cells, exposed to nicotine plus silica. In addition, TrkB inhibitor K252a downregulated p-TrkB and the downstream p-AKT and restricted the epithelial-mesenchymal transition caused by nicotine plus silica. In conclusion, nicotine activates the STAT3-BDNF-TrkB pathway, which promotes epithelial-mesenchymal transition and exacerbates pulmonary fibrosis in mice with combined exposure to silica particles and nicotine.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Fibrosis Pulmonar , Ratones , Animales , Fibrosis Pulmonar/inducido químicamente , Dióxido de Silicio/toxicidad , Nicotina/toxicidad , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Transición Epitelial-Mesenquimal , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fibrosis
18.
Am J Clin Nutr ; 118(1): 183-193, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37127109

RESUMEN

BACKGROUND: Although substantial evidence reveals that healthy lifestyle behaviors are associated with a lower risk of rheumatoid arthritis (RA), the underlying metabolic mechanisms remain unclear. OBJECTIVES: This study aimed to identify the metabolic signature reflecting a healthy lifestyle and investigate its observational and genetic linkage with RA risk. METHODS: This study included 87,258 UK Biobank participants (557 cases with incident RA) aged 37-73 y with complete lifestyle, genotyping, and nuclear magnetic resonance (NMR) metabolomics data. A healthy lifestyle was assessed based on 5 factors: healthy diet, regular exercise, not smoking, moderate alcohol consumption, and normal body mass index. The metabolic signature was developed by summing the selected metabolites' concentrations weighted by the coefficients using elastic net regression. We used the multivariate Cox model to assess the associations between metabolic signatures and RA risk, and examined the mediating role of the metabolic signature in the impact of a healthy lifestyle on RA. We performed genome-wide association analysis (GWAS) to obtain genetic variants associated with the metabolic signature and then conducted Mendelian randomization (MR) analyses to detect causality. RESULTS: The metabolic signature comprised 81 metabolites, robustly correlated with a healthy lifestyle (r = 0.45, P = 4.2 × 10-15). The metabolic signature was inversely associated with RA risk (HR per standard deviation (SD) increment: 0.76; 95% CI: 0.70-0.83), and largely explained the protective effects of healthy lifestyle on RA with 64% (95% CI: 50.4-83.3) mediation proportion. 1- and 2-sample MR analyses also consistently showed the associations of genetically inferred per SD increment in metabolic signature with a reduction in RA risk (HR: 0.84; 95% CI: 0.75-0.94; and P = 0.002 and OR: 0.84; 95% CI: 0.73-0.97; and P = 0.02, respectively). CONCLUSIONS: Our findings implicate that the metabolic signature reflecting healthy lifestyle is a potential causal mediator in the development of RA, highlighting the importance of early lifestyle intervention and metabolic status tracking for precise prevention of RA.


Asunto(s)
Artritis Reumatoide , Análisis de la Aleatorización Mendeliana , Humanos , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Artritis Reumatoide/genética , Estilo de Vida Saludable
19.
Materials (Basel) ; 15(20)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36295123

RESUMEN

Laser shock peening (LSP) is an innovative and promising surface strengthening technique of metallic materials. The LSP-induced plastic deformation, the compressive residual stresses and the microstructure evolution are essentially attributed to the laser plasma-induced shock wave. A three-dimensional finite element model in conjunction with the dislocation density-based constitutive model was developed to simulate the LSP of pure Al correlating with the LSP-induced shock wave, and the predicted in-depth residual stresses are in reasonable agreement with the experiment results. The LSP-induced shock wave associated with the laser spot diameter of 8.0 mm propagates in the form of the plane wave, and attenuates exponentially. At the same time, the propagation and attenuation of the LSP-induced shock wave associated with the laser spot diameter of 0.8 mm are in the form of the spherical wave. The reflection of the LSP-induced shock wave at the bottom surface of the target model increases the plastic deformation of the target bottom, resulting in the increase of dislocation density and the decrease of dislocation cell size accordingly. Reducing the target thickness can significantly increase the reflection times of the LSP-induced shock wave at the bottom and top surfaces of the target model, which is considered to be conductive to the generation of the compressive residual stress field and grain refinement.

20.
PeerJ ; 10: e13632, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35765591

RESUMEN

Background: Coal workers' pneumoconiosis (CWP) is an occupational disease that severely damages the life and health of miners. However, little is known about the molecular and cellular mechanisms changes associated with lung inflammation and fibrosis induced by coal dust. As a non-destructive technique for measuring biological tissue, confocal Raman spectroscopy provides accurate molecular fingerprints of label-free tissues and cells. Here, the progression of lung inflammation and fibrosis in a murine model of CWP was evaluated using confocal Raman spectroscopy. Methods: A mouse model of CWP was constructed and biochemical analysis in lungs exposed to coal dust after 1 month (CWP-1M) and 3 months (CWP-3M) vs control tissues (NS) were used by confocal Raman spectroscopy. H&E, immunohistochemical and collagen staining were used to evaluate the histopathology alterations in the lung tissues. Results: The CWP murine model was successfully constructed, and the mouse lung tissues showed progression of inflammation and fibrosis, accompanied by changes in NF-κB, p53, Bax, and Ki67. Meanwhile, significant differences in Raman bands were observed among the different groups, particularly changes at 1,248, 1,448, 1,572, and 746 cm-1. These changes were consistent with collagen, Ki67, and Bax levels in the CWP and NS groups. Conclusion: Confocal Raman spectroscopy represented a novel approach to the identification of the biochemical changes in CWP lungs and provides potential biomarkers of inflammation and fibrosis.


Asunto(s)
Antracosis , Minas de Carbón , Neumoconiosis , Ratones , Animales , Neumoconiosis/patología , Carbón Mineral , Modelos Animales de Enfermedad , Antígeno Ki-67 , Espectrometría Raman , Proteína X Asociada a bcl-2 , Pulmón/patología , Polvo , Antracosis/patología , Inflamación/patología , Minerales , Fibrosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA