Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

País/Región como asunto
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38928444

RESUMEN

Long non-coding RNAs (lncRNAs) are nucleotide sequences that participate in different biological processes and are associated with different pathologies, including cancer. Long intergenic non-protein-coding RNA 662 (LINC00662) has been reported to be involved in different cancers, including colorectal, prostate, and breast cancer. However, its role in gallbladder cancer has not yet been described. In this article, we hypothesize that LINC00662 has an important role in the acquisition of aggressiveness traits such as a stem-like phenotype, invasion, and chemoresistance in gallbladder cancer. Here, we show that LINC00662 is associated with larger tumor size and lymph node metastasis in patients with gallbladder cancer. Furthermore, we show that the overexpression of LINC00662 promotes an increase in CD133+/CD44+ cell populations and the expression of stemness-associated genes. LINC00662 promotes greater invasive capacity and the expression of genes associated with epithelial-mesenchymal transition. In addition, the expression of LINC00662 promotes resistance to cisplatin and 5-fluorouracil, associated with increased expression of chemoresistance-related ATP-binding cassette (ABC) transporters in gallbladder cancer (GBC) cell lines. Finally, we show that the mechanism by which LINC00662 exerts its function is through a decrease in microRNA 335-5p (miR-335-5p) and an increase in octamer-binding transcription factor 4 (OCT4) in GBC cells. Thus, our data allow us to propose LINC00662 as a biomarker of poor prognosis and a potential therapeutic target for patients with GBC.


Asunto(s)
Neoplasias de la Vesícula Biliar , Regulación Neoplásica de la Expresión Génica , MicroARNs , Factor 3 de Transcripción de Unión a Octámeros , ARN Largo no Codificante , Humanos , Neoplasias de la Vesícula Biliar/genética , Neoplasias de la Vesícula Biliar/patología , Neoplasias de la Vesícula Biliar/metabolismo , MicroARNs/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Línea Celular Tumoral , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Femenino , Transición Epitelial-Mesenquimal/genética , Resistencia a Antineoplásicos/genética , Masculino , Invasividad Neoplásica , Cisplatino/farmacología , Persona de Mediana Edad , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Fluorouracilo/farmacología , Metástasis Linfática
2.
Cancer Cell Int ; 23(1): 318, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38072958

RESUMEN

BACKGROUND: Gallbladder cancer (GBC) is a prevalent and deadly biliary tract carcinoma, often diagnosed at advanced stages with limited treatment options. The 5-year survival rate varies widely from 4 to 60%, mainly due to differences in disease stage detection. With only a small fraction of patients having resectable tumors and a high incidence of metastasis, advanced GBC stages are characterized by significant chemoresistance. Identification of new therapeutic targets is crucial, and recent studies have shown that the Endothelin-1 (ET-1) signaling pathway, involving ETAR and/or ETBR receptors (ETRs), plays a crucial role in promoting tumor aggressiveness in various cancer models. Blocking one or both receptors has been reported to reduce invasiveness and chemoresistance in cancers like ovarian, prostate, and colon. Furthermore, transcriptomic studies have associated ET-1 levels with late stages of GBC; however, it remains unclear whether its signaling or its inhibition has implications for its aggressiveness. Although the role of ET-1 signaling in gallbladder physiology is minimally understood, its significance in other tumor models leads us to hypothesize its involvement in GBC malignancy. RESULTS: In this study, we investigated the expression of ET-1 pathway proteins in three GBC cell lines and a primary GBC culture. Our findings demonstrated that both ETAR and ETBR receptors are expressed in GBC cells and tumor samples. Moreover, we successfully down-regulated ET-1 signaling using a non-selective ETR antagonist, Macitentan, which resulted in reduced migratory and invasive capacities of GBC cells. Additionally, Macitentan treatment chemosensitized the cells to Gemcitabine, a commonly used therapy for GBC. CONCLUSION: For the first time, we reveal the role of the ET-1 pathway in GBC cells, providing insight into the potential therapeutic targeting of its receptors to mitigate invasion and chemoresistance in this cancer with limited treatment options. These findings pave the way for further exploration of Macitentan or other ETR antagonists as potential therapeutic strategies for GBC management. In summary, our study represents a groundbreaking contribution to the field by providing the first evidence of the ET 1 pathway's pivotal role in modulating the behavior and aggressiveness of GBC cells, shedding new light on potential therapeutic targets.

3.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36835452

RESUMEN

Breast cancer (BC) is the most common cancer among women worldwide. BRCA1/2 are responsible for 16-20% of the risk for hereditary BC. Other susceptibility genes have been identified; Fanconi Anemia Complementation Group M (FANCM) being one of these. Two variants in FANCM, rs144567652 and rs147021911, are associated with BC risk. These variants have been described in Finland, Italy, France, Spain, Germany, Australia, the United States, Sweden, Finnish, and the Netherlands, but not in the South American populations. Our study evaluated the association of the SNPs rs144567652 and rs147021911 with BC risk in non-carriers of BRCA1/2 mutations from a South American population. The SNPs were genotyped in 492 BRCA1/2-negative BC cases and 673 controls. Our data do not support an association between FANCM rs147021911 and rs144567652 SNPs and BC risk. Nevertheless, two BC cases, one with a family history of BC and the other with sporadic early-onset BC, were C/T heterozygotes for rs144567652. In conclusion, this is the first study related contribution of FANCM mutations and BC risk in a South American population. Nevertheless, more studies are necessary to evaluate if rs144567652 could be responsible for familial BC in BRCA1/2-negatives and for early-onset non-familial BC in Chilean BC cases.


Asunto(s)
Neoplasias de la Mama , ADN Helicasas , Predisposición Genética a la Enfermedad , Femenino , Humanos , Neoplasias de la Mama/genética , Chile/epidemiología , ADN Helicasas/genética , Mutación , Edad de Inicio
4.
Int J Mol Sci ; 24(22)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38003265

RESUMEN

Cancer is a genomic disease, with driver mutations contributing to tumorigenesis. These potentially heritable variants influence risk and underlie familial breast cancer (BC). This study evaluated associations between BC risk and 13 SNPs in driver genes MAP3K1, SF3B1, SMAD4, ARID2, ATR, KMT2C, MAP3K13, NCOR1, and TBX3, in BRCA1/2-negative Chilean families. SNPs were genotyped using TaqMan Assay in 492 cases and 1285 controls. There were no associations between rs75704921:C>T (ARID2); rs2229032:A>C (ATR); rs3735156:C>G (KMT2C); rs2276738:G>C, rs2293906:C>T, rs4075943T:>A, rs13091808:C>T (MAP3K13); rs178831:G>A (NCOR1); or rs3759173:C>A (TBX3) and risk. The MAP3K1 rs832583 A allele (C/A+A/A) showed a protective effect in families with moderate BC history (OR = 0.7 [95% CI 0.5-0.9] p = 0.01). SF3B1 rs16865677-T (G/T+T/T) increased risk in sporadic early-onset BC (OR = 1.4 [95% CI 1.0-2.0] p = 0.01). SMAD4 rs3819122-C (A/C+C/C) increased risk in cases with moderate family history (OR = 2.0 [95% CI 1.3-2.9] p ≤ 0.0001) and sporadic cases diagnosed ≤50 years (OR = 1.6 [95% CI 1.1-2.2] p = 0.006). SMAD4 rs12456284:A>G increased BC risk in G-allele carriers (A/G + G/G) in cases with ≥2 BC/OC cases and early-onset cases (OR = 1.2 [95% CI 1.0-1.6] p = 0.04 and OR = 1.4 [95% CI 1.0-1.9] p = 0.03, respectively). Our study suggests that specific germline variants in driver genes MAP3K1, SF3B1, and SMAD4 contribute to BC risk in Chilean population.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/genética , Proteína BRCA1/genética , Chile/epidemiología , Predisposición Genética a la Enfermedad , Proteína BRCA2/genética , Mutación de Línea Germinal , Células Germinativas , Polimorfismo de Nucleótido Simple
5.
Biol Res ; 55(1): 20, 2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35637532

RESUMEN

BACKGROUND: Driver mutations are the genetic components responsible for tumor initiation and progression. These variants, which may be inherited, influence cancer risk and therefore underlie many familial cancers. The present study examines the potential association between SNPs in driver genes SF3B1 (rs4685), TBX3 (rs12366395, rs8853, and rs1061651) and MAP3K1 (rs72758040) and BC in BRCA1/2-negative Chilean families. METHODS: The SNPs were genotyped in 486 BC cases and 1258 controls by TaqMan Assay. RESULTS: Our data do not support an association between rs4685:C > T, rs8853:T > C, or rs1061651:T > C and BC risk. However, the rs12366395-G allele (A/G + G/G) was associated with risk in families with a strong history of BC (OR = 1.2 [95% CI 1.0-1.6] p = 0.02 and OR = 1.5 [95% CI 1.0-2.2] p = 0.02, respectively). Moreover, rs72758040-C was associated with increased risk in cases with a moderate-to-strong family history of BC (OR = 1.3 [95% CI 1.0-1.7] p = 0.02 and OR = 1.3 [95% CI 1.0-1.8] p = 0.03 respectively). Finally, risk was significantly higher in homozygous C/C cases from families with a moderate-to-strong BC history (OR = 1.8 [95% CI 1.0-3.1] p = 0.03 and OR = 1.9 [95% CI 1.1-3.4] p = 0.01, respectively). We also evaluated the combined impact of rs12366395-G and rs72758040-C. Familial BC risk increased in a dose-dependent manner with risk allele count, reflecting an additive effect (p-trend = 0.0002). CONCLUSIONS: Our study suggests that germline variants in driver genes TBX3 (rs12366395) and MAP3K1 (rs72758040) may influence BC risk in BRCA1/2-negative Chilean families. Moreover, the presence of rs12366395-G and rs72758040-C could increase BC risk in a Chilean population.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Chile/epidemiología , Femenino , Predisposición Genética a la Enfermedad/genética , Genómica , Humanos
6.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36499743

RESUMEN

Variants in genes encoding for microRNAs have been associated with their deregulation in breast cancer (BC). Sequencing of microRNAs deregulated in BC was performed using DNA from Chilean patients with a strong family history and negative for mutations in BRCA1/BRCA2. Seventeen variants were identified, three of which were selected for a case-control association study: rs376491654 (miR-335), rs755634302 (miR-497), and rs190708267 (miR-155). For rs190708267 C>T, the heterozygous T allele was detected in four BC cases and absent in controls, while homozygous TT cases were not detected. Variants were modelled in silico, cloned in a plasmid, expressed in BC cell lines, and functional in vitro assays were performed. Overexpression of the miR-155-T allele increased mature miR-155-5p levels in both BC cell lines, suggesting that its presence alters pre-miR-155 processing. Moreover, BC cells overexpressing the miR-155-T allele showed increased proliferation, migration, and resistance to cisplatin-induced death compared to miR-155-C overexpressing cells. Of note, the 3'UTR of APC, GSK3ß, and PPP1CA genes, all into the canonical Wnt signaling pathway, were identified as direct targets. APC and GSK3ß mRNA levels decreased while PP1 levels increased. These results suggest a pathogenic role of the variant rs190708267 (miR-155) in BRCA 1/2 negative BC, conferring susceptibility and promoting traits of aggressiveness.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Femenino , Humanos , Regiones no Traducidas 3' , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Mutación
7.
Int J Mol Sci ; 23(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35008806

RESUMEN

MicroRNA-423 (miR-423) is highly expressed in breast cancer (BC). Previously, our group showed that the SNP rs6505162:C>A located in the pre-miR-423 was significantly associated with increased familial BC risk in patients with a strong family history of BC. Therefore, in this study, we evaluated the functional role of rs6505162 in mammary tumorigenesis in vitro to corroborate the association of this SNP with BC risk. We found that rs6505162:C>A upregulated expression of both mature miR-423 sequences (3p and 5p). Moreover, pre-miR-423-A enhanced proliferation, and promoted cisplatin resistance in BC cell lines. We also showed that pre-miR-423-A expression decreased cisplatin-induced apoptosis, and increased BC cell migration and invasion. We propose that the rs6505162-A allele promotes miR-423 overexpression, and that the rs6505162-A allele induces BC cell proliferation, viability, chemoresistance, migration, and invasion, and decreases cell apoptosis as a consequence. We suggest that rs6505162:C>A is a functional SNP site with potential utility as a marker for early diagnosis, prognosis, and treatment efficacy monitoring in BRCA1/2-negative BC patients, as well as a possible therapeutic target.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Movimiento Celular/genética , Resistencia a Antineoplásicos/genética , Variación Genética , MicroARNs/metabolismo , Apoptosis/genética , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Cisplatino/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , MicroARNs/genética , Invasividad Neoplásica , Polimorfismo de Nucleótido Simple/genética , Regulación hacia Arriba/genética
8.
J Cell Biochem ; 118(11): 3662-3674, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28370561

RESUMEN

Osteosarcoma is the most common malignant bone tumor in children and adolescents. Metastasis and poor responsiveness to chemotherapy in osteosarcoma correlates with over-expression of the runt-related transcription factor RUNX2, which normally plays a key role in osteogenic lineage commitment, osteoblast differentiation, and bone formation. Furthermore, WNT/ß-catenin signaling is over-activated in osteosarcoma and promotes tumor progression. Importantly, the WNT/ß-catenin pathway normally activates RUNX2 gene expression during osteogenic lineage commitment. Therefore, we examined whether the WNT/ß-catenin pathway controls the tumor-related elevation of RUNX2 expression in osteosarcoma. We analyzed protein levels and nuclear localization of ß-catenin and RUNX2 in a panel of human osteosarcoma cell lines (SAOS, MG63, U2OS, HOS, G292, and 143B). In all six cell lines, ß-catenin and RUNX2 are expressed to different degrees and localized in the nucleus and/or cytoplasm. SAOS cells have the highest levels of RUNX2 protein that is localized in the nucleus, while MG63 cells have the lowest RUNX2 levels which is mostly localized in the cytoplasm. Levels of ß-catenin and RUNX2 protein are enhanced in HOS, G292, and 143B cells after treatment with the GSK3ß inhibitor SB216763. Furthermore, small interfering RNA (siRNA)-mediated depletion of ß-catenin inhibits RUNX2 expression in G292 cells. Thus, WNT/ß-catenin activation is required for RUNX2 expression in at least some osteosarcoma cell types, where RUNX2 is known to promote expression of metastasis related genes. J. Cell. Biochem. 118: 3662-3674, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Neoplasias Óseas/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/biosíntesis , Proteínas de Neoplasias/biosíntesis , Osteosarcoma/metabolismo , Vía de Señalización Wnt , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Línea Celular Tumoral , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Metástasis de la Neoplasia , Proteínas de Neoplasias/genética , Osteosarcoma/genética , Osteosarcoma/patología
9.
J Cell Biochem ; 117(2): 334-43, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26138431

RESUMEN

Oncogenic kinase Aurora A (AURKA) has been found to be overexpresed in several tumors including colorectal, breast, and hematological cancers. Overexpression of AURKA induces centrosome amplification and aneuploidy and it is related with cancer progression and poor prognosis. Here we show that AURKA phosphorylates in vitro the transcripcional co-repressor Ski on aminoacids Ser326 and Ser383. Phosphorylations on these aminoacids decreased Ski protein half-life. Reduced levels of Ski resulted in centrosomes amplification and multipolar spindles formation, same as AURKA overexpressing cells. Importantly, overexpression of Ski wild type, but not S326D and S383D mutants inhibited centrosome amplification and cellular transformation induced by AURKA. Altogether, these results suggest that the Ski protein is a target in the transformation pathway mediated by the AURKA oncogene.


Asunto(s)
Aurora Quinasa A/metabolismo , Transformación Celular Neoplásica/metabolismo , Proteínas de Unión al ADN/fisiología , Proteínas Proto-Oncogénicas/fisiología , Secuencia de Aminoácidos , Animales , Centrosoma/metabolismo , Expresión Génica , Células HEK293 , Humanos , Células MCF-7 , Ratones , Datos de Secuencia Molecular , Células 3T3 NIH , Fosforilación , Procesamiento Proteico-Postraduccional , Huso Acromático/metabolismo
10.
Mol Carcinog ; 55(2): 220-9, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25594310

RESUMEN

We previously found that the small GTPase Rheb regulates the cell-cycle inhibitor p27KIP1 (p27) in colon cancer cells by a mTORC1-independent mechanism. However, the biological function of the Rheb/p27 axis in cancer cells remains unknown. Here, we show that siRNA-mediated depletion of Rheb decreases survival of human colon cancer cells under serum deprivation. As autophagy can support cell survival, we analyzed the effect of Rheb on this process by detecting the modification of the autophagy marker protein LC3 by western blot and imunofluorescence. We found that Rheb promotes autophagy in several human cancer cell lines under serum deprivation. Accordingly, blocking autophagy inhibited the pro-survival effect of Rheb in colon cancer cells. We then analyzed whether p27 was involved in the biological effect of Rheb. Depletion of p27 inhibited colon cancer cell survival, and Rheb induction of autophagy. These results suggest that p27 has an essential role in the effect of Rheb in response to serum deprivation. In addition, we demonstrated that the role of p27 in autophagy stands on the N-terminal portion of the protein, where the CDK-inhibitory domain is located. Our results indicate that a Rheb/p27 axis accounts for the activation of autophagy that supports cancer cell survival. Our work therefore highlights a biological function of Rheb and prompts the need for future studies to address whether the mTORC1-independent Rheb/p27 axis could contribute to tumorigenesis and/or resistance to mTOR inhibitors.


Asunto(s)
Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Neoplasias/metabolismo , Neuropéptidos/metabolismo , Autofagia , Sitios de Unión , Línea Celular Tumoral , Supervivencia Celular , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/química , Humanos , Proteína Homóloga de Ras Enriquecida en el Cerebro , Estrés Fisiológico
11.
BMC Cancer ; 15: 30, 2015 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-25636233

RESUMEN

BACKGROUND: Germline mutations in PALB2 have been identified in approximately 1% of familial breast cancer (BC) in several populations. Nevertheless its contribution in the South-American population is unknown. The goal of this study was to determine the prevalence of PALB2 mutations in the Chilean population. METHODS: 100 Chilean BRCA1/2-negatives familial BC cases were included for the PALB2 mutation analysis. We use conformational sensitive gel electrophoresis and direct sequencing. Using a case-control design, we studied the identified variants in 436 BC cases and 809 controls to evaluate their possible association with BC risk. RESULTS: No pathogenic mutations were detected. We identified three variants, the variant c.1861C > A not previously described was found in one of the 436 cases and none of the 809 controls. The bioinformatic analyses indicate that this variant probably is not pathogenic. PALB2 c.1676A > G (rs152451A/G) and c.2993C > T (rs45551636C/T) variants were significantly associated with increased BC risk only in cases with a strong family history of BC (OR = 1.9 [CI 95% 1.3-2.8] p < 0.01 and OR = 3.3 [CI 95% 1.4-7.3] p < 0.01, respectively). The rs152451A/G-rs45551636C/T composite genotype produce increase of the BC risk in cases with a strong family history of BC (OR = 3.6 [CI 95% 1.7-8.0] p = 0.003). The rs152451-G/rs45551636-C and rs152451-G/rs45551636-T haplotypes were associated with an increased BC risk only in cases with a strong family history of BC (OR = 1.6 [CI 95% 1.0-2.5] p = 0.05 and OR = 3.7 [CI 95% 1.8-7.5] p < 0.001, respectively). CONCLUSION: Our results suggest that PALB2 c.1676A > G and c.2993C > T play roles in BC risk in women with a strong family history of BC.


Asunto(s)
Predisposición Genética a la Enfermedad , Variación Genética , Proteínas Nucleares/genética , Proteínas Supresoras de Tumor/genética , Adulto , Edad de Inicio , Alelos , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/genética , Estudios de Casos y Controles , Chile/epidemiología , Biología Computacional , Análisis Mutacional de ADN , Proteína del Grupo de Complementación N de la Anemia de Fanconi , Femenino , Frecuencia de los Genes , Genotipo , Haplotipos , Humanos , Persona de Mediana Edad , Mutación , Vigilancia de la Población , Prevalencia , Riesgo , Adulto Joven
12.
Mol Cancer ; 13: 209, 2014 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-25204429

RESUMEN

Early in cancer development, tumour cells express vascular endothelial growth factor (VEGF), a secreted molecule that is important in all stages of angiogenesis, an essential process that provides nutrients and oxygen to the nascent tumor and thereby enhances tumor-cell survival and facilitates growth. Survivin, another protein involved in angiogenesis, is strongly expressed in most human cancers, where it promotes tumor survival by reducing apoptosis as well as favoring endothelial cell proliferation and migration. The mechanisms by which cancer cells induce VEGF expression and angiogenesis upon survivin up-regulation remain to be fully established. Since the PI3K/Akt signalling and ß-catenin-Tcf/Lef dependent transcription have been implicated in the expression of many cancer-related genes, including survivin and VEGF, we evaluated whether survivin may favor VEGF expression, release from tumor cells and induction of angiogenesis in a PI3K/Akt-ß-catenin-Tcf/Lef-dependent manner. Here, we provide evidence linking survivin expression in tumor cells to increased ß-catenin protein levels, ß-catenin-Tcf/Lef transcriptional activity and expression of several target genes of this pathway, including survivin and VEGF, which accumulates in the culture medium. Alternatively, survivin downregulation reduced ß-catenin protein levels and ß-catenin-Tcf/Lef transcriptional activity. Also, using inhibitors of PI3K and the expression of dominant negative Akt, we show that survivin acts upstream in an amplification loop to promote VEGF expression. Moreover, survivin knock-down in B16F10 murine melanoma cells diminished the number of blood vessels and reduced VEGF expression in tumors formed in C57BL/6 mice. Finally, in the chick chorioallantoid membrane assay, survivin expression in tumor cells enhanced VEGF liberation and blood vessel formation. Importantly, the presence of neutralizing anti-VEGF antibodies precluded survivin-enhanced angiogenesis in this assay. These findings provide evidence for the existance of a posititve feedback loop connecting survivin expression in tumor cells to PI3K/Akt enhanced ß-catenin-Tcf/Lef-dependent transcription followed by secretion of VEGF and angiogenesis.


Asunto(s)
Proteínas Inhibidoras de la Apoptosis/metabolismo , Melanoma Experimental/irrigación sanguínea , Neovascularización Patológica/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Represoras/metabolismo , Transcripción Genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , beta Catenina/metabolismo , Animales , Pollos , Membrana Corioalantoides/metabolismo , Regulación hacia Abajo , Femenino , Células HEK293 , Humanos , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH , Neovascularización Patológica/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Survivin , Factor A de Crecimiento Endotelial Vascular/genética
13.
Animals (Basel) ; 14(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38672378

RESUMEN

Mammary cancer is a frequent disease in female dogs, where a high proportion of cases correspond to malignant tumors that may exhibit drug resistance. Within the mammary tumor microenvironment, there is a cell subpopulation called cancer stem cells (CSCs), which are capable of forming spheres in vitro and resisting anti-tumor treatments, partly explaining the recurrence of some tumors. Previously, it has been described that spheres derived from canine mammary carcinoma cells CF41.Mg and REM 134 exhibit stemness characteristics. Melatonin has shown anti-tumor effects on mammary tumor cells; however, its effects have been poorly evaluated in canine mammary CSCs. This study aimed to analyze the effect of melatonin on the chemoresistance exhibited by stem-like neoplastic cells derived from canine mammary carcinoma to cytotoxic drugs such as doxorubicin and mitoxantrone. CF41.Mg and REM 134 cells were cultured in high-glucose DMEM supplemented with fetal bovine serum and L-glutamine. The spheres were cultured in ultra-low attachment plates in DMEM/F12 medium without fetal bovine serum and with different growth factors. The CD44+/CD24-/low phenotype was analyzed by flow cytometry. The viability of sphere-derived cells (MTS reduction) was studied in the presence of melatonin (0.1 or 1 mM), doxorubicin, mitoxantrone, and luzindole. In addition, the gene (RT-qPCR) of the multidrug resistance bombs MDR1 and ABCG2 were analyzed in the presence of melatonin. Both cell types expressed the MT1 gene, which encodes the melatonin receptor MT1. Melatonin 1 mM does not modify the CD44+/CD24-/low phenotype; however, the hormone reduced viability (p < 0.0001) only in CF41.Mg spheres, without inducing an additive effect when co-incubated with cytotoxic drugs. These effects were independent of the binding of the hormone to its receptor MT1, since, by pharmacologically inhibiting them, the effect of melatonin was not blocked. In CF41.Mg spheres, the relative gene expression of ABCG2 and MDR1 was decreased in response to the hormone (p < 0.001). These results indicate that melatonin negatively modulates the cell survival of spheres derived from CF41.Mg cells, in a way that is independent of its MT1 receptor. These effects did not counteract the resistance to doxorubicin and mitoxantrone, even though the hormone negatively regulates the gene expression of MDR1 and ABCG2.

14.
Microorganisms ; 12(5)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38792752

RESUMEN

Chagas disease is caused by the single-flagellated protozoan Trypanosoma cruzi, which affects several million people worldwide. Understanding the signal transduction pathways involved in this parasite's growth, adaptation, and differentiation is crucial. Understanding the basic mechanisms of signal transduction in T. cruzi could help to develop new drugs to treat the disease caused by these protozoa. In the present work, we have demonstrated that Fetal Calf Serum (FCS) can quickly increase the levels of both phosphorylated and unphosphorylated forms of T. cruzi DNA polymerase beta (TcPolß) in tissue-cultured trypomastigotes. The in vitro phosphorylation sites on TcPolß by protein kinases TcCK1, TcCK2, TcAUK1, and TcPKC1 have been identified by Mass Spectrometry (MS) analysis and with antibodies against phosphor Ser-Thr-Tyr. MS analysis indicated that these protein kinases can phosphorylate Ser and Thr residues on several sites on TcPolß. Unexpectedly, it was found that TcCK1 and TcPKC1 can phosphorylate a different Tyr residue on TcPolß. By using a specific anti-phosphor Tyr monoclonal antibody, it was determined that TcCK1 can be in vitro autophosphorylated on Tyr residues. In vitro and in vivo studies showed that phorbol 12-myristate 13-acetate (PMA) can activate the PKC to stimulate the TcPolß phosphorylation and enzymatic activity in T. cruzi epimastigotes.

15.
J Cell Physiol ; 228(4): 714-23, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22949168

RESUMEN

Runx2 regulates osteogenic differentiation and bone formation, but also suppresses pre-osteoblast proliferation by affecting cell cycle progression in the G(1) phase. The growth suppressive potential of Runx2 is normally inactivated in part by protein destabilization, which permits cell cycle progression beyond the G(1)/S phase transition, and Runx2 is again up-regulated after mitosis. Runx2 expression also correlates with metastasis and poor chemotherapy response in osteosarcoma. Here we show that six human osteosarcoma cell lines (SaOS, MG63, U2OS, HOS, G292, and 143B) have different growth rates, which is consistent with differences in the lengths of the cell cycle. Runx2 protein levels are cell cycle-regulated with respect to the G(1)/S phase transition in U2OS, HOS, G292, and 143B cells. In contrast, Runx2 protein levels are constitutively expressed during the cell cycle in SaOS and MG63 cells. Forced expression of Runx2 suppresses growth in all cell lines indicating that accumulation of Runx2 in excess of its pre-established levels in a given cell type triggers one or more anti-proliferative pathways in osteosarcoma cells. Thus, regulatory mechanisms controlling Runx2 expression in osteosarcoma cells must balance Runx2 protein levels to promote its putative oncogenic functions, while avoiding suppression of bone tumor growth.


Asunto(s)
Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Osteosarcoma/genética , Osteosarcoma/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Neoplasias Óseas/patología , Procesos de Crecimiento Celular/fisiología , Línea Celular Tumoral , Fase G1/genética , Humanos , Osteosarcoma/patología , Fase S/genética
16.
Biomolecules ; 13(9)2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37759783

RESUMEN

Indomethacin is a non-selective NSAID used against pain and inflammation. Although cyclooxygenase (COX) inhibition is considered indomethacin's primary action mechanism, COX-independent ways are associated with beneficial effects in cancer. In colon cancer cells, the activation of the peroxisome proliferator-activated receptor-γ (PPAR-γ) is related to the increase in spermidine/spermine-N1-acetyltransferase-1 (SSAT-1), a key enzyme for polyamine degradation, and related to cell cycle arrest. Indomethacin increases the SSAT-1 levels in lung cancer cells; however, the mechanism relying on the SSAT-1 increase is unclear. Thus, we asked for the influence of the PPAR-γ on the SSAT-1 expression in two lung cancer cell lines: H1299 and A549. We found that the inhibition of PPAR-γ with GW9662 did not revert the increase in SSAT-1 induced by indomethacin. Because the mRNA of SSAT-1 suffers a pre-translation retention step by nucleolin, a nucleolar protein, we explored the relationship between indomethacin and the upstream translation regulators of SSAT-1. We found that indomethacin decreases the nucleolin levels and the cyclin-dependent kinase 1 (CDK1) levels, which phosphorylates nucleolin in mitosis. Overexpression of nucleolin partially reverts the effect of indomethacin over cell viability and SSAT-1 levels. On the other hand, Casein Kinase, known for phosphorylating nucleolin during interphase, is not modified by indomethacin. SSAT-1 exerts its antiproliferative effect by acetylating polyamines, a process reverted by the polyamine oxidase (PAOX). Recently, methoctramine was described as the most specific inhibitor of PAOX. Thus, we asked if methoctramine could increase the effect of indomethacin. We found that, when combined, indomethacin and methoctramine have a synergistic effect against NSCLC cells in vitro. These results suggest that indomethacin increases the SSAT-1 levels by reducing the CDK1-nucleolin regulatory axis, and the PAOX inhibition with methoctramine could improve the antiproliferative effect of indomethacin.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Humanos , Acetiltransferasas/genética , Proteína Quinasa CDC2 , Ciclooxigenasa 2 , Indometacina/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Oxidorreductasas , Receptores Activados del Proliferador del Peroxisoma , Poliamino Oxidasa , Nucleolina
17.
Cells ; 12(3)2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36766848

RESUMEN

Glioblastoma (GBM) is the most common and aggressive type of brain tumor due to its elevated recurrence following treatments. This is mainly mediated by a subpopulation of cells with stemness traits termed glioblastoma stem-like cells (GSCs), which are extremely resistant to anti-neoplastic drugs. Thus, an advancement in the understanding of the molecular processes underlying GSC occurrence should contribute significantly towards progress in reducing aggressiveness. High levels of endothelin-converting enzyme-1 (ECE1), key for endothelin-1 (ET-1) peptide activation, have been linked to the malignant progression of GBM. There are four known isoforms of ECE1 that activate ET-1, which only differ in their cytoplasmic N-terminal sequences. Isoform ECE1c is phosphorylated at Ser-18 and Ser-20 by protein kinase CK2, which increases its stability and hence promotes aggressiveness traits in colon cancer cells. In order to study whether ECE1c exerts a malignant effect in GBM, we designed an ECE1c mutant by switching a putative ubiquitination lysine proximal to the phospho-serines Lys-6-to-Arg (i.e., K6R). This ECE1cK6R mutant was stably expressed in U87MG, T98G, and U251 GBM cells, and their behavior was compared to either mock or wild-type ECE1c-expressing clone cells. ECE1cK6R behaved as a highly stable protein in all cell lines, and its expression promoted self-renewal and the enrichment of a stem-like population characterized by enhanced neurospheroid formation, as well as increased expression of stem-like surface markers. These ECE1cK6R-derived GSC-like cells also displayed enhanced resistance to the GBM-related chemotherapy drugs temozolomide and gemcitabine and increased expression of the ABCG2 efflux pump. In addition, ECE1cK6R cells displayed enhanced metastasis-associated traits, such as the modulation of adhesion and the enhancement of cell migration and invasion. In conclusion, the acquisition of a GSC-like phenotype, together with heightened chemoresistance and invasiveness traits, allows us to suggest phospho-ECE1c as a novel marker for poor prognosis as well as a potential therapeutic target for GBM.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/metabolismo , Enzimas Convertidoras de Endotelina/genética , Enzimas Convertidoras de Endotelina/metabolismo , Línea Celular Tumoral , Células Madre Neoplásicas/patología , Fenotipo
18.
Microorganisms ; 10(5)2022 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-35630333

RESUMEN

High-risk human papillomaviruses (HR-HPVs) are the etiological agents of cervical cancer. However, a low proportion of HR-HPV-infected women finally develop this cancer, which suggests the involvement of additional cofactors. Epstein−Barr virus (EBV) has been detected in cervical squamous cell carcinomas (SCCs) as well as in low- (LSIL) and high-grade (HSIL) squamous intraepithelial lesions, although its role is unknown. In this study, we characterized HR-HPV/EBV co-presence and viral gene expression in LSIL (n = 22), HSIL (n = 52), and SCC (n = 19) from Chilean women. Additionally, phenotypic changes were evaluated in cervical cancer cells ectopically expressing BamHI-A Rightward Frame 1 (BARF1). BARF1 is a lytic gene also expressed in EBV-positive epithelial tumors during the EBV latency program. HPV was detected in 6/22 (27.3%) LSIL, 38/52 (73.1%) HSIL, and 15/19 (78.9%) SCC cases (p < 0.001). On the other hand, EBV was detected in 16/22 (72.7%) LSIL, 27/52 (51.9%) HSIL, and 13/19 (68.4%) SCC cases (p = 0.177). HR-HPV/EBV co-presence was detected in 3/22 (13.6%) LSIL, 17/52 (32.7%) HSIL, and 11/19 (57.9%) SCC cases (p = 0.020). Additionally, BARF1 transcripts were detected in 37/55 (67.3%) of EBV positive cases and in 19/30 (63.3%) of HR-HPV/EBV positive cases. Increased proliferation, migration, and epithelial-mesenchymal transition (EMT) was observed in cervical cancer cells expressing BARF1. Thus, both EBV and BARF1 transcripts are detected in low- and high-grade cervical lesions as well as in cervical carcinomas. In addition, BARF1 can modulate the tumor behavior in cervical cancer cells, suggesting a role in increasing tumor aggressiveness.

19.
Gene ; 819: 146246, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35122924

RESUMEN

Triple-negative breast cancer (TNBC) represents a challenge in the search for new therapeutic targets. TNBCs are aggressive and generate resistance to chemotherapy. Tumors of TNBC patients with poor prognosis present a high level of adenosine deaminase acting on RNA1 (ADAR1). We explore the connection of ADAR1 with the canonical Wnt signaling pathway and the effect of modulation of its expression in TNBC. Expression data from cell line sequencing (DepMap) and TCGA samples were downloaded and analyzed. We lentivirally generated an MDA-MB-231 breast cancer cell line that overexpress (OE) ADAR1p110 or an ADAR knockdown. Abundance of different proteins related to Wnt/ß-catenin pathway and activity of nuclear ß-catenin were analyzed by Western blot and luciferase TOP/FOP reporter assay, respectively. Cell invasion was analyzed by matrigel assay. In mice, we study the behavior of tumors generated from ADAR1p110 (OE) cells and tumor vascularization immunostaining were analyzed. ADAR1 connects to the canonical Wnt pathway in TNBC. ADAR1p110 overexpression decreased GSK-3ß, while increasing active ß-catenin. It also increased the activity of nuclear ß-catenin and increased its target levels. ADAR1 knockdown has the opposite effect. MDA-MB-231 ADAR1 (OE) cells showed increased capacity of invasion. Subsequently, we observed that tumors derived from ADAR1p110 (OE) cells showed increased invasion towards the epithelium, and increased levels of Survivin and CD-31 expressed in vascular endothelial cells. These results indicate that ADAR1 overexpression alters the expression of some key components of the canonical Wnt pathway, favoring invasion and neovascularization, possibly through activation of the ß-catenin, which suggests an unknown role of ADAR1p110 in aggressiveness of TNBC tumors.


Asunto(s)
Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Ratones , Ratones Endogámicos BALB C , Fenotipo , Vía de Señalización Wnt , beta Catenina/metabolismo
20.
J Cell Physiol ; 226(1): 103-9, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20625999

RESUMEN

Altered expression of some members of the TRP ion channel superfamily has been associated with the development of pathologies like cancer. In particular, TRPM4 levels are reportedly elevated in diffuse large B-cell non-Hodgkin lymphoma, prostate, and cervical cancer. However, whether such changes in TRPM4 expression may be relevant to genesis or progression of cancer remains unknown. Here we show that reducing TRPM4 expression decreases proliferation of HeLa cells, a cervical cancer-derived cell line. In this cell line, constitutive TRPM4 silencing promoted GSK-3ß-dependent degradation of ß-catenin and reduced ß-catenin/Tcf/Lef-dependent transcription. Conversely, overexpression of TRPM4 in T-REx 293 cells (a HEK293-derived cell line) increased cell proliferation and ß-catenin levels. Our results identify TRPM4 as an important, unanticipated regulator of the ß-catenin pathway, where aberrant signaling is frequently associated with cancer.


Asunto(s)
Transducción de Señal/fisiología , Canales Catiónicos TRPM/metabolismo , Regulación hacia Arriba/fisiología , beta Catenina/metabolismo , Línea Celular , Proliferación Celular , Humanos , Canales Catiónicos TRPM/genética , Transcripción Genética , beta Catenina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA