Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(12): e2112248119, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35302891

RESUMEN

The proneness of water to crystallize is a major obstacle to understanding its putative exotic behavior in the supercooled state. It also represents a strong practical limitation to cryopreservation of biological systems. Adding some concentration of glycerol, which has a cryoprotective effect preventing, to some degree, water crystallization, has been proposed as a possible way out, provided the concentration is small enough for water to retain some of its bulk character and/or for limiting the damage caused by glycerol on living organisms. Contrary to previous expectations, we show that, in the "marginal" glycerol molar concentration ≈ 18%, at which vitrification is possible with no crystallization on rapid cooling, water crystallizes upon isothermal annealing even below the calorimetric glass transition of the solution. Through a time-resolved polarized neutron scattering investigation, we extract key parameters, size and shape of the ice crystallites, fraction of water that crystallizes, and crystallization time, which are important for cryoprotection, as a function of the annealing temperature. We also characterize the nature of the out-of-equilibrium liquid phases that are present at low temperature, providing more arguments against the presence of an isocompositional liquid­liquid transition. Finally, we propose a rule of thumb to estimate the lower temperature limit below which water crystallization does not occur in aqueous solutions.

2.
Phys Rev Lett ; 129(22): 228002, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36493446

RESUMEN

Upon loading, amorphous solids can exhibit brittle yielding, with the abrupt formation of macroscopic shear bands leading to fracture, or ductile yielding, with a multitude of plastic events leading to homogeneous flow. It has been recently proposed, and subsequently questioned, that the two regimes are separated by a sharp critical point, as a function of some control parameter characterizing the intrinsic disorder strength and the degree of stability of the solid. In order to resolve this issue, we have performed extensive numerical simulations of athermally driven elastoplastic models with long-range and anisotropic realistic interaction kernels in two and three dimensions. Our results provide clear evidence for a finite-disorder critical point separating brittle and ductile yielding, and we provide an estimate of the critical exponents in 2D and 3D.


Asunto(s)
Anisotropía , Resistencia a la Tracción
3.
J Chem Phys ; 156(19): 194503, 2022 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-35597648

RESUMEN

We propose and numerically implement a local probe of the static self-induced heterogeneity characterizing glass-forming liquids. This method relies on the equilibrium statistics of the overlap between pairs of configurations measured in mesoscopic cavities with unconstrained boundaries. By systematically changing the location of the probed cavity, we directly detect spatial variations of the overlap fluctuations. We provide a detailed analysis of the statistics of a local estimate of the configurational entropy, and we infer an estimate of the surface tension between amorphous states, ingredients that are both at the basis of the random first-order transition theory of glass formation. Our results represent the first direct attempt to visualize and quantify the self-induced heterogeneity underpinning the thermodynamics of glass formation. They pave the way for the development of coarse-grained effective theories and for a direct assessment of the role of thermodynamics in the activated dynamics of deeply supercooled liquids.

4.
Proc Natl Acad Sci U S A ; 115(26): 6656-6661, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29891678

RESUMEN

We combine an analytically solvable mean-field elasto-plastic model with molecular dynamics simulations of a generic glass former to demonstrate that, depending on their preparation protocol, amorphous materials can yield in two qualitatively distinct ways. We show that well-annealed systems yield in a discontinuous brittle way, as metallic and molecular glasses do. Yielding corresponds in this case to a first-order nonequilibrium phase transition. As the degree of annealing decreases, the first-order character becomes weaker and the transition terminates in a second-order critical point in the universality class of an Ising model in a random field. For even more poorly annealed systems, yielding becomes a smooth crossover, representative of the ductile rheological behavior generically observed in foams, emulsions, and colloidal glasses. Our results show that the variety of yielding behaviors found in amorphous materials does not necessarily result from the diversity of particle interactions or microscopic dynamics but is instead unified by carefully considering the role of the initial stability of the system.

5.
J Chem Phys ; 153(22): 224502, 2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-33317282

RESUMEN

The overlap, or similarity, between liquid configurations is at the core of the mean-field description of the glass transition and remains a useful concept when studying three-dimensional glass-forming liquids. In liquids, however, the overlap involves a tolerance, typically of a fraction a/σ of the inter-particle distance, associated with how precisely similar two configurations must be for belonging to the same physically relevant "state." Here, we systematically investigate the dependence of the overlap fluctuations and of the resulting phase diagram when the tolerance is varied over a large range. We show that while the location of the dynamical and thermodynamic glass transitions (if present) is independent of a/σ, that of the critical point associated with a transition between a low- and a high-overlap phase in the presence of an applied source nontrivially depends on the value of a/σ. We rationalize our findings by using liquid-state theory and the hypernetted-chain approximation for correlation functions. In addition, we confirm the theoretical trends by studying a three-dimensional glass-former by computer simulations. We show, in particular, that a range of a/σ below what is commonly considered maximizes the temperature of the critical point, pushing it up in a liquid region where viscosity is low and computer investigations are easier due to a significantly faster equilibration.

6.
J Chem Phys ; 150(9): 094501, 2019 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-30849874

RESUMEN

It was recently discovered that SWAP, a Monte Carlo algorithm that involves the exchange of pairs of particles of differing diameters, can dramatically accelerate the equilibration of simulated supercooled liquids in regimes where the normal dynamics is glassy. This spectacular effect was subsequently interpreted as direct evidence against a static, cooperative explanation of the glass transition such as the one offered by the random first-order transition (RFOT) theory. We explain the speedup induced by SWAP within the framework of the RFOT theory. We suggest that the efficiency of SWAP stems from a postponed onset of glassy dynamics. We describe this effect in terms of "crumbling metastability" and use the example of nucleation to illustrate the possibility of circumventing free-energy barriers of thermodynamic origin by a change in the local dynamical rules.

7.
J Chem Phys ; 148(16): 164501, 2018 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-29716205

RESUMEN

We study by molecular dynamics simulation a dense one-component system of particles confined on a spherical substrate. We more specifically investigate the evolution of the structural and dynamical properties of the system when changing the control parameters, the temperature and the curvature of the substrate. We find that the dynamics become glassy at low temperature, with a strong slowdown of the relaxation and the emergence of dynamical heterogeneity. The prevalent local 6-fold order is frustrated by curvature and we analyze in detail the role of the topological defects in the statics and the dynamics of the particle assembly.

8.
Phys Rev Lett ; 118(21): 215501, 2017 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-28598643

RESUMEN

Geometric frustration describes the inability of a local molecular arrangement, such as icosahedra found in metallic glasses and in model atomic glass formers, to tile space. Local icosahedral order, however, is strongly frustrated in Euclidean space, which obscures any causal relationship with the observed dynamical slowdown. Here we relieve frustration in a model glass-forming liquid by curving three-dimensional space onto the surface of a 4-dimensional hypersphere. For sufficient curvature, frustration vanishes and the liquid "freezes" in a fully icosahedral structure via a sharp "transition." Frustration increases upon reducing the curvature, and the transition to the icosahedral state smoothens while glassy dynamics emerge. Decreasing the curvature leads to decoupling between dynamical and structural length scales and the decrease of kinetic fragility. This sheds light on the observed glass-forming behavior in Euclidean space.

9.
Proc Natl Acad Sci U S A ; 111(22): 7980-5, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24799709

RESUMEN

The cuprate high-temperature superconductors have been the focus of unprecedentedly intense and sustained study not only because of their high superconducting transition temperatures, but also because they represent the most exquisitely investigated examples of highly correlated electronic materials. In particular, the pseudogap regime of the phase diagram exhibits a variety of mysterious emergent behaviors. In the last few years, evidence from NMR and scanning tunneling microscopy (STM) studies, as well as from a new generation of X-ray scattering experiments, has accumulated, indicating that a general tendency to short-range-correlated incommensurate charge density wave (CDW) order is "intertwined" with the superconductivity in this regime. Additionally, transport, STM, neutron-scattering, and optical experiments have produced evidence--not yet entirely understood--of the existence of an associated pattern of long-range-ordered point-group symmetry breaking with an electron-nematic character. We have carried out a theoretical analysis of the Landau-Ginzburg-Wilson effective field theory of a classical incommensurate CDW in the presence of weak quenched disorder. Although the possibilities of a sharp phase transition and long-range CDW order are precluded in such systems, we show that any discrete symmetry-breaking aspect of the charge order--nematicity in the case of the unidirectional (stripe) CDW we consider explicitly--generically survives up to a nonzero critical disorder strength. Such "vestigial order," which is subject to unambiguous macroscopic detection, can serve as an avatar of what would be CDW order in the ideal, zero disorder limit. Various recent experiments in the pseudogap regime of the hole-doped cuprates are readily interpreted in light of these results.


Asunto(s)
Cobre/química , Electrónica/métodos , Modelos Químicos , Transición de Fase , Semiconductores , Anisotropía , Conductividad Eléctrica , Microscopía de Túnel de Rastreo , Física/métodos , Temperatura
10.
Phys Rev Lett ; 116(14): 145701, 2016 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-27104718

RESUMEN

We revisit the phenomenon of spinodals in the presence of quenched disorder and develop a complete theory for it. We focus on the spinodal of an Ising model in a quenched random field (RFIM), which has applications in many areas from materials to social science. By working at zero temperature in the quasistatically driven RFIM, thermal fluctuations are eliminated and one can give a rigorous content to the notion of spinodal. We show that the latter is due to the depinning and the subsequent expansion of rare droplets. We work out the associated critical behavior, which, in any finite dimension, is very different from the mean-field one: the characteristic length diverges exponentially and the thermodynamic quantities display very mild nonanalyticities much like in a Griffith phenomenon. From the recently established connection between the spinodal of the RFIM and glassy dynamics, our results also allow us to conclusively assess the physical content and the status of the dynamical transition predicted by the mean-field theory of glass-forming liquids.

11.
J Chem Phys ; 143(8): 084505, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26328854

RESUMEN

We study the dynamics of a one-component liquid constrained on a spherical substrate, a 2-sphere, and investigate how the mode-coupling theory (MCT) can describe the new features brought by the presence of curvature. To this end we have derived the MCT equations in a spherical geometry. We find that, as seen from the MCT, the slow dynamics of liquids in curved space at low temperature does not qualitatively differ from that of glass-forming liquids in Euclidean space. The MCT predicts the right trend for the evolution of the relaxation slowdown with curvature but is dramatically off at a quantitative level.

12.
Proc Natl Acad Sci U S A ; 114(10): 2440-2442, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28242708
13.
Phys Rev Lett ; 112(17): 175701, 2014 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-24836257

RESUMEN

We introduce an approach to derive an effective scalar field theory for the glass transition; the fluctuating field is the overlap between equilibrium configurations. We apply it to the case of constrained liquids for which the introduction of a conjugate source to the overlap field was predicted to lead to an equilibrium critical point. We show that the long-distance physics in the vicinity of this critical point is in the same universality class as that of a paradigmatic disordered model: the random-field Ising model. The quenched disorder is provided here by a reference equilibrium liquid configuration. We discuss to what extent this field-theoretical description and the mapping to the random field Ising model hold in the whole supercooled liquid regime, in particular, near the glass transition.

14.
J Chem Phys ; 141(4): 044716, 2014 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-25084946

RESUMEN

Hysteresis and discontinuities in the isotherms of a fluid adsorbed in a nanopore in general hamper the determination of equilibrium thermodynamic properties, even in computer simulations. A way around this has been to consider both a reservoir of small size and a pore of small extent in order to restrict the fluctuations of density and approach a classical van der Waals loop. We assess this suggestion by thoroughly studying through Monte Carlo simulations and density functional theory the influence of system size on the equilibrium configurations of the adsorbed fluid and on the resulting isotherms. We stress the importance of pore-symmetry-breaking states that even for modest pore sizes lead to discontinuous isotherms and we discuss the physical relevance of these states and the methodological consequences for computing thermodynamic quantities.

15.
Phys Rev Lett ; 110(13): 135703, 2013 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-23581342

RESUMEN

We investigate the connection between a formal property of the critical behavior of several disordered systems, known as "dimensional reduction," and the presence in these systems at zero temperature of collective events known as "avalanches." Avalanches generically produce nonanalyticities in the functional dependence of the cumulants of the renormalized disorder. We show that this leads to a breakdown of the dimensional reduction predictions if and only if the fractal dimension characterizing the scaling properties of the avalanches is exactly equal to the difference between the dimension of space and the scaling dimension of the primary field. This is proven by combining scaling theory and the functional renormalization group. We therefore clarify the puzzle of why dimensional reduction remains valid in random field systems above a nontrivial dimension (but fails below), always applies to the statistics of branched polymer, and is always wrong in elastic models of interfaces in a random environment.

16.
J Chem Phys ; 138(12): 12A515, 2013 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-23556766

RESUMEN

We analytically and numerically characterize the structure of hard-sphere fluids in order to review various geometrical frustration scenarios of the glass transition. We find generalized polytetrahedral order to be correlated with increasing fluid packing fraction, but to become increasingly irrelevant with increasing dimension. We also find the growth in structural correlations to be modest in the dynamical regime accessible to computer simulations.

17.
Phys Rev E ; 108(5-1): 054107, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38115505

RESUMEN

We revisit the approach to the lower critical dimension d_{lc} in the Ising-like φ^{4} theory within the functional renormalization group by studying the lowest approximation levels in the derivative expansion of the effective average action. Our goal is to assess how the latter, which provides a generic approximation scheme valid across dimensions and found to be accurate in d≥2, is able to capture the long-distance physics associated with the expected proliferation of localized excitations near d_{lc}. We show that the convergence of the fixed-point effective potential is nonuniform in the field when d→d_{lc} with the emergence of a boundary layer around the minimum of the potential. This allows us to make analytical predictions for the value of the lower critical dimension d_{lc} and for the behavior of the critical temperature as d→d_{lc}, which are both found in fair agreement with the known results. This confirms the versatility of the theoretical approach.

18.
Phys Rev Lett ; 108(3): 035701, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22400759

RESUMEN

We study the geometrical frustration scenario of glass formation for simple hard-sphere models. We find that the dual picture in terms of defects brings little insight and no theoretical simplification for the understanding of the slowing down of relaxation, because of the strong frustration characterizing these systems. The possibility of a growing static length is furthermore found to be physically irrelevant in the regime that is accessible to computer simulations.

19.
Phys Rev E ; 105(6-1): 064605, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35854525

RESUMEN

We examine the influence of quenched disorder on the flocking transition of dense polar active matter. We consider incompressible systems of active particles with aligning interactions under the effect of either quenched random forces or random dilution. The system displays a continuous disorder-order (flocking) transition, and the associated scaling behavior is described by a new universality class which is controlled by a quenched Navier-Stokes fixed point. We determine the critical exponents through a perturbative renormalization group analysis. We show that the two forms of quenched disorder, random force and random mass (dilution), belong to the same universality class, in contrast with the situation at equilibrium.

20.
Phys Rev Lett ; 107(4): 041601, 2011 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-21866990

RESUMEN

We provide a resolution of one of the long-standing puzzles in the theory of disordered systems. By reformulating the functional renormalization group for the critical behavior of the random field Ising model in a superfield formalism, we are able to follow the associated supersymmetry and its spontaneous breaking along the functional renormalization group flow. Breaking is shown to occur below a critical dimension d(DR) ≃ 5.1 and leads to a breakdown of the "dimensional reduction" property. We compute the critical exponents as a function of dimension and give evidence that scaling is described by three independent exponents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA