Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Am Chem Soc ; 143(14): 5406-5412, 2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33645968

RESUMEN

The photochemical oxygenation reactions of a host-guest complex, pCp⊂[Ag2L0](SbF6)2 (pCp = [2.2]paracyclophane) have been investigated in solution and in the solid state, using the macrocyclic ligand L0 having four anthracene moieties in the framework. As a result, it was found that the reactivity and host-guest functions show remarkable phase dependence. In solution, the photosensitized oxygenation of all the anthracene moieties of L0 resulted in a fully oxygenated macrocycle [Ag2L4](SbF6)2 as the final product, while simultaneously the guest molecule was dissociated from the macrocyclic cavity. On the other hand, in an amorphous solid of pCp⊂[Ag2L0](SbF6)2 prepared by decomposing single crystals through the removal of the crystalline solvent, the oxygenated site of L0 was significantly controlled to provide a site-selectively oxygenated inclusion complex, pCp⊂[Ag2L1](SbF6)2, possessing a mono-oxygenated Cs-symmetrical macrocyclic skeleton.

2.
Small ; 17(22): e2005803, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33599118

RESUMEN

Porous crystals have great potential to exert space-specific functions such as multipoint molecular recognition. In order to rationally enhance the porous function, it is necessary to precisely control molecular recognition event in the pores. Hydrogen bonding is an effective tool for controlling molecular recognition. However, multiple hydrogen bonds, which are essentially the origin of high complementarity and specificity, remain difficult to innovate in porous crystals in an intelligent way. This paper demonstrates molecular recognition of amino acid and peptide derivatives by multipoint hydrogen bonding in a porous metal-macrocycle framework revealed by single-crystal X-ray diffraction analysis. l-Serine residues are site-selectively and residue-specifically adsorbed on the pore surface via multiple hydrogen bonds. A serine derivative is diastereoselectively recognized on the (P)- or (M)-side of the enantiomeric pore surface. Moreover, the conformation of the peptide is highly regulated, incorporating a poly-l-proline type I helix-like structure into the pore. These findings will bring deep scientific knowledge to the design of new porous crystals and functions.


Asunto(s)
Aminoácidos , Péptidos , Cristalografía por Rayos X , Enlace de Hidrógeno , Porosidad , Conformación Proteica
3.
Acc Chem Res ; 53(3): 632-643, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-31970991

RESUMEN

Molecular recognition is one of the fundamental events in biological systems, as typified by enzymes that enable highly efficient and selective catalytic reactions through precise recognition of substrate(s) and cofactor(s) in the binding pockets. Chemists therefore have long been inspired by such excellent molecular systems to develop various synthetic receptors with well-defined binding sites. Their effort is currently being devoted to the construction of not only molecular receptors but also self-assembled host compounds possessing connected cavities (pores) in the crystalline frameworks to rationally design functional porous materials capable of efficiently adsorbing molecules or ions at binding sites on the pore walls. However, it is still challenging to design multiple distinct binding sites that are precisely arranged in an identical framework, which is currently one of the most important targets in this field to realize elaborate molecular systems beyond natural enzymes.In this Account, we provide an overview of porous crystals with well-defined molecular recognition sites. We first show several strategies for arranging macrocyclic binding sites in crystalline frameworks such as metal-organic frameworks, porous molecular crystals, and covalent organic frameworks. Porous metal-macrocycle frameworks (MMFs) that we have recently developed are then described as a new type of porous crystals with well-defined multiple distinct binding sites. The MMF-1 crystal, which was developed first and is composed of four stereoisomers of helical PdII3-macrocycle complexes, has one-dimensional channels with dimensions of 1.4 nm × 1.9 nm equipped with enantiomeric pairs of five distinct binding sites. This structural feature of MMF-1 therefore allows for site-selective and asymmetric arrangement of not only single but also multiple guest molecules in the crystalline channels based on molecular recognition between the guests and the multiple binding sites. This characteristic was also exploited to develop a heterogeneous catalyst by non-covalently immobilizing an organic acid on the pore surface of MMF-1 to conduct size-specific catalytic reactions. In addition, adsorption of a photoreactive substrate in MMF was found to switch the photoreaction pathway to cause another reaction with the aid of photoactivated PdII centers arranged on the pore walls. Furthermore, the dynamic, transient process of molecular arrangement incorporated in MMF-1 has been successfully visualized by single-crystal X-ray diffraction analysis. The formation of homochiral MMF-2 composed of only (P)- or (M)-helical PdII3-macrocycle complexes is also described. Thus, macrocycle-based porous crystals with a complex structure such as MMFs are expected to serve as novel porous materials that have great potential to mimic or surpass enzymes by utilizing well-defined multiple binding sites capable of spatially arranging a catalyst, substrate, and effector for highly selective and allosterically tunable catalytic reactions, which can be also visualized by crystallographic analysis because of their crystalline nature.


Asunto(s)
Compuestos Macrocíclicos/química , Sitios de Unión , Cristalografía por Rayos X , Ligandos , Metales/química , Estructura Molecular , Porosidad
4.
Faraday Discuss ; 225: 197-209, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33104769

RESUMEN

Molecular adsorption on a surface is a unique way to break the mirror-symmetry of prochiral molecules, and therefore the use of chiral surfaces is an effective strategy for achieving highly selective chiral separation and asymmetric catalytic reactions based on molecular adsorption with high diastereoselectivity. We have previously reported a porous metal-macrocycle framework (MMF) with an enantiomeric pair of chiral pore-surfaces derived from Pd-helical macrocycles as the ingredients of the framework. Aiming at applying the chiral pore-surface of the MMF to asymmetric reactions and chiral separation, herein we propose a strategy to utilize one of the enantiomerically paired pore-surfaces as a homochiral pore-surface with the aid of chiral auxiliaries that can block only one side of the enantiomeric pore-surfaces in a site-selective manner. Single-crystal X-ray diffraction analysis revealed that a chiral auxiliary, (1R)- or (1S)-1-(3-chlorophenyl)ethanol, and a prochiral guest molecule, 2'-hydroxyacetophenone, were cooperatively arranged in each pore unit so that the prochiral guest molecule can face-selectively bind to the homochiral pore-surface.

5.
J Am Chem Soc ; 140(48): 16610-16614, 2018 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-30407819

RESUMEN

A nanosized confined space with well-defined functional surfaces has great potential to control the efficiency and selectivity of catalytic reactions. Herein we report that a 1,6-diene, which normally forms an intramolecular [2+2] cycloadduct under photoirradiation, preferentially undergoes a photoinduced olefin migration in a porous crystal, metal-macrocycle framework (MMF), and alternatively [2+2] cycloaddition is completely inhibited in the confined space. A plausible reaction mechanism for olefin migration triggered by the photoinduced dissociation of the Pd-Cl bond is suggested based on UV-vis diffuse reflectance spectroscopy, single-crystal XRD, and MS-CASPT2 calculation. The substrate scope of the photoinduced olefin migration in MMF was also examined using substituted allylbenzene derivatives.

6.
J Am Chem Soc ; 139(32): 11214-11221, 2017 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-28730816

RESUMEN

Both symmetrical and unsymmetrical cyclophanes containing disilane units, tetrasila[2.2]cyclophanes 1-9, were synthesized. The syn and anti conformations and the kinetics of inversion between two anti-isomers were investigated by X-ray diffraction and variable-temperature NMR analysis, respectively. The flipping motion of two aromatic rings was affected by the bulkiness of the aromatic moiety (1 vs 6), the phase (solid vs solution), and the inclusion by host molecules (1 vs 1⊂[Ag2L]2+). The photophysical, electrochemical, and structural properties of the compounds were thoroughly investigated. Unsymmetrical tetrasila[2.2]cyclophanes 5-8 displayed blue-green emission arising from intramolecular charge transfer. Compound 6 emitted a brilliant green light in the solid state under 365 nm irradiation and showed a higher fluorescence quantum yield in the solid state (Φ = 0.49) than in solution (Φ = 0.05). We also obtained planar chiral tetrasila[2.2]cyclophane 9, which showed interesting chiroptical properties, such as a circularly polarized luminescence (CPL) with a dissymmetry factor of |glum| = ca. 2 × 10-3 at 500 nm. Moreover, an organic green light-emitting diode that showed a maximum external quantum efficiency (ηext) of ca. 0.4% was fabricated by doping 4,4'-bis(2,2'-diphenylvinyl)-1,1'-biphenyl with 6.

8.
Angew Chem Int Ed Engl ; 54(18): 5351-4, 2015 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-25756834

RESUMEN

The cleavage of CC bonds in π-conjugated systems is an important method for controlling their shape and coplanarity. An efficient way for the cleavage of an aromatic CC bond in a typical buckybowl corannulene skeleton is reported. The reaction of 2-pyridylcorannulene with a catalytic amount of IrCl3 ⋅n H2 O in ethylene glycol at 250 °C resulted in a structural transformation from the curved corannulene skeleton to a strain-free flat benzo[ghi]fluoranthene skeleton through a site-selective CC cleavage reaction. This cleavage reaction was found to be driven by both the coordination of the 2-pyridyl substituent to iridium and the relief of strain in the curved corannulene skeleton. This finding should facilitate the design of carbon nanomaterials based on CC bond cleavage reactions.

9.
J Am Chem Soc ; 136(52): 17946-9, 2014 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-25479363

RESUMEN

A macrocyclic host molecule possessing a nanocavity with two Ag(I) centers for guest binding and four anthracene walls has been developed. This dimetal-macrocycle forms stable inclusion complexes with ditopic aromatic guest molecules, [2.2]paracyclophane, and ferrocene, in solution and/or in the solid state through Ag-π interactions within the nanocavity. The binding constants for the inclusion complexes were found to range roughly from 10(4) to 10(9) M(-1). Electrochemical measurement revealed that the oxidized form of the included cationic ferrocene was less stabilized due to the direct binding to the cationic two Ag(I) centers.

10.
Angew Chem Int Ed Engl ; 53(32): 8310-5, 2014 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-24889657

RESUMEN

Porous crystals are excellent materials with potential spatial functions through molecular encapsulation within the pores. Co-encapsulation of multiple different molecules further expands their usability and designability. Herein we report the simultaneous arrangement of up to three different guest molecules, TTF (tetrathiafulvalene), ferrocene, and fluorene, on the pore surfaces of a porous crystalline metal-macrocycle framework (MMF). The position and orientation of adsorbed molecules arranged in the pore were determined by single-crystal X-ray diffraction analysis. The anchoring effect of hydrogen bonds between the hydroxy groups of the guest molecules and inter-guest cooperation and competition are significant factors in the adsorption behaviors of the guest molecules. This finding would serve as a design basis of multicomponent functionalized nanospaces for elaborate reactions that are realized in enzymes.

11.
Sensors (Basel) ; 13(5): 5671-85, 2013 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-23645105

RESUMEN

Macrocyclic compounds that can bind cationic species efficiently and selectively with their cyclic cavities have great potential as excellent chemosensors for metal ions. Recently, we have developed a tetraoxime-type tetraazamacrocyclic ligand 1 formed through a facile one-pot cyclization reaction. Aiming to explore and bring out the potential of the tetraoxime macrocycle 1 as a chelating sensor, we report herein the preparation of several kinds of silver complexes of 1 and their unique coordination structures determined by single-crystal X-ray diffraction analyses. As a result, the formation of two kinds of discrete structures, monomeric complexes [Ag(1)X] (X = counter anions) and a dimeric complex [Ag2(1)2]X2, and two kinds of polymeric structures from a mononuclear complex, [Ag(1)]nXn, and from a dinuclear complex, [Ag2(1)X2]n, was demonstrated. In the resulting complexes, the structurally flexible macrocyclic ligand 1 was found to provide several different coordination modes. Notably, in some silver complexes of 1, AgI-AgI interactions were observed with different AgI-AgI distances which depend on the kind of counter anions and the chemical composition.

12.
Nat Commun ; 14(1): 7868, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057325

RESUMEN

Molecular twist is a characteristic component of molecular machines. Selectively synthesising isomers with different modes of twisting and controlling their motion such as helicity inversion is an essential challenge for achieving more advanced molecular systems. Here we report a strategy to control the inversion kinetics: the kinetically selective synthesis of tightly- and loosely-twisted isomers of a trinuclear PdII-macrocycle and their markedly different molecular behaviours. The loosely-twisted isomers smoothly invert between (P)- and (M)-helicity at a rate of 3.31 s-1, while the helicity inversion of the tightly-twisted isomers is undetectable but rather relaxes to the loosely-twisted isomers. This critical difference between these two isomers is explained by the presence or absence of an absolute configuration inversion of the nitrogen atoms of the macrocyclic amine ligand. Strategies to control the helicity inversion and structural loosening motions by the mode of twisting offer future possibilities for the design of molecular machines.

13.
Nat Commun ; 14(1): 4490, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563107

RESUMEN

Structurally flexible porous crystals that combine high regularity and stimuli responsiveness have received attracted attention in connection with natural allostery found in regulatory systems of activity and function in biological systems. Porous crystals with molecular recognition sites in the inner pores are particularly promising for achieving elaborate functional control, where the local binding of effectors triggers their distortion to propagate throughout the structure. Here we report that the structure of a porous molecular crystal can be allosterically controlled by local adsorption of effectors within low-symmetry nanochannels with multiple molecular recognition sites. The exchange of effectors at the allosteric site triggers diverse conversion of the framework structure in an effector-dependent manner. In conjunction with the structural conversion, it is also possible to switch the molecular affinity at different recognition sites. These results may provide a guideline for the development of supramolecular materials with flexible and highly-ordered three-dimensional structures for biological applications.


Asunto(s)
Modelos Moleculares , Sitio Alostérico , Regulación Alostérica
14.
J Am Chem Soc ; 134(5): 2461-4, 2012 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-22148728

RESUMEN

Hollow nanostructures for the functional assembly of chemical groups with inner surface geometry and regulable stoichiometry enable steric design of interior reaction centers. Herein we report a metal-macrocycle framework (MMF) that forms single-crystalline nanochannels with five distinct enantiomeric pairs of guest binding pockets. During crystal-soaking experiments, the MMF crystals can encapsulate aromatic molecules with high site selectivity. First, constitutional isomers of dibromobenzene are captured and sorted into different binding pockets. Second, each of the optical isomers of (1R/1S)-1-(3-chlorophenyl)ethanol is included diastereoselectively into one of an enantiomeric pair of binding pockets. An advantage of this strategy is that the interior walls can be "repainted" via replacement of the trapped molecules with alternatives. Such guest uptake behaviors would allow highly regioselective or stereoselective reactions within the nanochannel.


Asunto(s)
Plomo/química , Nanoestructuras/química , Compuestos Organometálicos/química , Sustancias Macromoleculares/química , Modelos Moleculares , Estructura Molecular , Porosidad , Propiedades de Superficie
15.
Inorg Chem ; 51(3): 1508-15, 2012 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-22233424

RESUMEN

A phenanthroline-based macrocycle 1 has been newly developed which has two chemically equivalent metal chelating sites within the spatially restricted cavity for dinuclear metal arrangement. The macrocycle 1 reacts with Zn(CF(3)CO(2))(2) or ZnCl(2) to form homodinuclear Zn(II)-complexes. A single-crystal X-ray structural analysis of the resulting Zn(2)1(CF(3)CO(2))(4) determined the complex structure in which two Zn(II) ions are bound by two phenanthroline sites and two CF(3)CO(2)(-) ions bind to each Zn(II) ion in a tetrahedral geometry. Similarly, a homodinuclear Cu(I)-macrocycle was formed from 1 and Cu(CH(3)CN)(4)BF(4). Notably, from 1 and an equimolar mixture of Cu(CH(3)CN)(4)BF(4) and Zn(CF(3)CO(2))(2), a heterodinuclear Cu(I)-Zn(II)-macrocycle was exclusively formed in high yield (>90%) because of the relatively low stability of the dinuclear Cu(I)-macrocycle. A heterodinuclear Ag(I)-Zn(II)-macrocycle was similarly formed with fairly high selectivity from a mixture of Ag(I) and Zn(II) ions. Such selective heterodinuclear metal arrangement was not observed with other combinations of M-Zn(II) (M = Li(I), Mg(II), Pd(II), Hg(II), La(III), and Tb(III)).

16.
Angew Chem Int Ed Engl ; 51(52): 13123-7, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23154930

RESUMEN

Metal-mediated secondary structures of peptide-based foldamers were constructed using artificial backbone-coordinative oxime peptides. Complexation of the peptides with Pd(II) afforded several mononuclear and dinuclear secondary structures such as helices and hairpins as confirmed by single-crystal XRD and NMR analyses.


Asunto(s)
Oximas/química , Paladio/química , Péptidos/química , Cristalografía por Rayos X , Enlace de Hidrógeno , Espectroscopía de Resonancia Magnética , Estructura Secundaria de Proteína
17.
Angew Chem Int Ed Engl ; 51(11): 2606-9, 2012 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-22238070

RESUMEN

Neatly wrapped up: alternately stacked square-planar platinum(II) complexes inside a dinuclear coordination cage were prepared to give a discrete and soluble Pt(5) -array of the Magnus' salt type. Characterization of the complex in solution was complemented by an X-ray crystal structure of {[Pt(pyridine)(4)]⋅ [PtCl(4)](2) @Cage}; this structure showed the linear, pentanuclear array within the cages and their circular packing into a hollow tubular superstructure.

18.
Chem Sci ; 13(30): 8752-8758, 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35975147

RESUMEN

Natural enzymes control the intrinsic reactivity of chemical reactions in the natural environment, giving only the necessary products. In recent years, challenging research on the reactivity control of terpenes with structural diversity using artificial host compounds that mimic such enzymatic reactions has been actively pursued. A typical example is the acid-catalyzed olefin isomerization of (+)-limonene, which generally gives a complex mixture due to over-isomerization to thermodynamically favored isomers. Herein we report a highly controlled conversion of (+)-limonene by kinetic suppression of over-isomerization in a confined space of a porous metal-macrocycle framework (MMF) equipped with a Brønsted acid catalyst. The terminal double bond of (+)-limonene migrated to one neighbor, preferentially producing terpinolene. This reaction selectivity was in stark contrast to the homogeneous acid-catalyzed reaction in bulk solution and to previously reported catalytic reactions. X-ray structural analysis and examination of the reaction with adsorption inhibitors suggest that the reactive substrates may bind non-covalently to specific positions in the confined space of the MMF, thereby inhibiting the over-isomerization reaction. The nanospaces of the MMF with substrate binding ability are expected to enable highly selective synthesis of a variety of terpene compounds.

20.
Dalton Trans ; 51(4): 1318-1324, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-34985075

RESUMEN

The synthesis of branched gold nanoparticles (AuNPs) with shape- and size-specific optical properties requires effective control of the particle formation mechanism using appropriate reducing agents and protective agents that prevent particle aggregation in solution. In this context, the heterogeneous synthesis of AuNPs using solid surfaces of graphene oxides and metal-organic frameworks has attracted much attention. These materials are characterized by their ability to immobilize and stabilize the particles grown on the surface without the need for additional protective agents. However, the shape- and size-selective synthesis of AuNPs using solid surfaces remains challenging. Herein, we report the shape-selective one-step synthesis of monodisperse branched AuNPs using a metal-macrocycle framework (MMF), a porous molecular crystal of PdII3-tris(phenylenediamine) macrocycle. Konpeito-Shaped branched AuNPs with uniform size were obtained on the surface of MMF by mixing HAuCl4·4H2O, L-ascorbic acid and MMF microcrystals. Spectroscopic and microscopic observations confirmed that MMF promoted the reduction of gold by its reductive activity as well as acted as a solid support to electrostatically immobilize the pseudo-seed particles for further growth on the crystal surface. In addition, the MMF also served as a substrate for in situ high-speed AFM imaging due to the effective immobilization of AuNPs on the surface, allowing direct visualization of the particle growth. Since the chemical structural features of MMF allow the growth of branched AuNPs via pseudo-seeding, this approach would provide new synthetic methods for obtaining a variety of gold nanostructures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA