Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chaos Solitons Fractals ; 159: 112178, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35578625

RESUMEN

COVID-19 has shown that quarantine (or self-isolation) may be the only available tool against an unknown infectious disease if neither an effective vaccine nor anti-viral medication is available. Motivated by the fact that a considerable number of people were not compliant with the request for self-quarantine made by public authorities, this study used a multi-agent simulation model, whose results were validated by theory work, which highlights how and to what extent such an anti-social behavior hampers the confinement of a disease. Our framework quantifies two important scenarios: in one scenario a certain number of individuals totally ignore quarantine, whereas in the second scenario a larger number of individuals partially ignore the imposed policy. Our results reveal that the latter scenario can be more hazardous even if the total amount of social deficit of activity-measured by the total number of severed links in a physical network-would be same as the former scenario has, of which quantitative extent is dependent on the fraction of asymptomatic infected cases and the level of quarantine intensity the government imposing. Our findings have significance not only to epidemiology but also to research in the broader field of network science. PACS numbers: Theory and modeling; computer simulation, 87.15.Aa; Dynamics of evolution, 87.23.Kg.

2.
Appl Math Comput ; 431: 127328, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35756537

RESUMEN

COVID-19 has emphasized that a precise prediction of a disease spreading is one of the most pressing and crucial issues from a social standpoint. Although an ordinary differential equation (ODE) approach has been well established, stochastic spreading features might be hard to capture accurately. Perhaps, the most important factors adding such stochasticity are the effect of the underlying networks indicating physical contacts among individuals. The multi-agent simulation (MAS) approach works effectively to quantify the stochasticity. We systematically investigate the stochastic features of epidemic spreading on homogeneous and heterogeneous networks. The study quantitatively elucidates that a strong microscopic locality observed in one- and two-dimensional regular graphs, such as ring and lattice, leads to wide stochastic deviations in the final epidemic size (FES). The ensemble average of FES observed in this case shows substantial discrepancies with the results of ODE based mean-field approach. Unlike the regular graphs, results on heterogeneous networks, such as Erdos-Rényi random or scale-free, show less stochastic variations in FES. Also, the ensemble average of FES in heterogeneous networks seems closer to that of the mean-field result. Although the use of spatial structure is common in epidemic modeling, such fundamental results have not been well-recognized in literature. The stochastic outcomes brought by our MAS approach may lead to some implications when the authority designs social provisions to mitigate a pandemic of un-experienced infectious disease like COVID-19.

3.
J Theor Biol ; 520: 110682, 2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-33744309

RESUMEN

With the aid of the evolutionary vaccination game on a scale-free network, we design a new subsidy policy, named degree dependent subsidy, where cooperative agents get incentives according to their connectivity or degree. That is, agents, having a greater degree, receive a higher incentive, and vice versa. Here we presume that vaccinators are cooperative agents. The new scheme can be said to an intermediate policy between two previously studies policies, namely free ticket and flat discount policies. The former policy distributes free tickets to cooperative hub agents as a priority, whereas the latter dispenses a fixed discount to every cooperator. We compare the efficiency of each policy in terms of having a less infectious state with a minimum social cost. While investigating the performance of the three policies in terms of average social payoff-which takes into account the cost of vaccination as well as infection-the free ticket scheme is found to be the most appealing policies among the three when the budget for subsidy is quite low. The degree dependent subsidy policy outperforms others for a moderate budget size, while the flat discount policy requires a higher budget to effectively suppress the disease. We further estimate threshold levels of the subsidy budget for each policy beyond which subsidizing results in excessive use of vaccination. As a whole, concerning vaccination coverage and final epidemic size, the degree-dependent subsidy scheme outperforms the flat discount scheme, but is dominated by the free ticket policy.


Asunto(s)
Epidemias , Políticas , Motivación , Vacunación
4.
PLoS One ; 18(12): e0295954, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38100436

RESUMEN

The COVID-19 pandemic has remarkably heightened concerns regarding the prediction of communicable disease spread. This study introduces an innovative agent-based modeling approach. In this model, the quantification of human-to-human transmission aligns with the dynamic variations in the viral load within an individual, termed "within-host" and adheres to the susceptible-infected-recovered (SIR) process, referred to as "between-host." Variations in the viral load over time affect the infectivity between individual agents. This model diverges from the traditional SIR model, which employs a constant transmission probability, by incorporating a dynamic, time-dependent transmission probability influenced by the viral load in a host agent. The proposed model retains the time-integrated transmission probability characteristic of the conventional SIR model. As observed in this model, the overall epidemic size remains consistent with the predictions of the standard SIR model. Nonetheless, compared to predictions based on the classical SIR process, notable differences existed in the peak number of the infected individuals and the timing of this peak. These nontrivial differences are induced by the direct correlation between the time-evolving transmission probability and the viral load within a host agent. The developed model can inform targeted intervention strategies and public health policies by providing detailed insights into disease spread dynamics, crucial for effectively managing epidemics.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Epidemias , Humanos , Pandemias , Enfermedades Transmisibles/epidemiología , COVID-19/epidemiología , Probabilidad
5.
Sci Rep ; 12(1): 8111, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35581274

RESUMEN

Vaccination, if available, is the best preventive measure against infectious diseases. It is, however, needed to prudently design vaccination strategies to successfully mitigate the disease spreading, especially in a time when vaccine scarcity is inevitable. Here we investigate a vaccination strategy on a scale-free network where susceptible individuals, who have social connections with infected people, are being detected and given vaccination before having any physical contact with the infected one. Nevertheless, detecting susceptible (also infected ones) may not be perfect due to the lack of information. Also, vaccines do not confer perfect immunity in reality. We incorporate these pragmatic hindrances in our analysis. We find that if vaccines are highly efficacious, and the detecting error is low, then it is possible to confine the disease spreading-by administering a less amount of vaccination-within a short period. In a situation where tracing susceptible seems difficult, then expanding the range for vaccination targets can be socially advantageous only if vaccines are effective enough. Our analysis further reveals that a more frequent screening for vaccination can reduce the effect of detecting errors. In the end, we present a link percolation-based analytic method to approximate the results of our simulation.


Asunto(s)
Eficacia de las Vacunas , Vacunas , Simulación por Computador , Humanos , Vacunación/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA