Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 21(7): e3002191, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37463141

RESUMEN

We study natural DNA polymorphisms and associated phenotypes in the Arabidopsis relative Cardamine hirsuta. We observed strong genetic differentiation among several ancestry groups and broader distribution of Iberian relict strains in European C. hirsuta compared to Arabidopsis. We found synchronization between vegetative and reproductive development and a pervasive role for heterochronic pathways in shaping C. hirsuta natural variation. A single, fast-cycling ChFRIGIDA allele evolved adaptively allowing range expansion from glacial refugia, unlike Arabidopsis where multiple FRIGIDA haplotypes were involved. The Azores islands, where Arabidopsis is scarce, are a hotspot for C. hirsuta diversity. We identified a quantitative trait locus (QTL) in the heterochronic SPL9 transcription factor as a determinant of an Azorean morphotype. This QTL shows evidence for positive selection, and its distribution mirrors a climate gradient that broadly shaped the Azorean flora. Overall, we establish a framework to explore how the interplay of adaptation, demography, and development shaped diversity patterns of 2 related plant species.


Asunto(s)
Arabidopsis , Cardamine , Arabidopsis/genética , Cardamine/genética , Genotipo , Fenotipo , Demografía
2.
Plant J ; 78(1): 1-15, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24460550

RESUMEN

A major goal in biology is to identify the genetic basis for phenotypic diversity. This goal underpins research in areas as diverse as evolutionary biology, plant breeding and human genetics. A limitation for this research is no longer the availability of sequence information but the development of functional genetic tools to understand the link between changes in sequence and phenotype. Here we describe Cardamine hirsuta, a close relative of the reference plant Arabidopsis thaliana, as an experimental system in which genetic and transgenic approaches can be deployed effectively for comparative studies. We present high-resolution genetic and cytogenetic maps for C. hirsuta and show that the genome structure of C. hirsuta closely resembles the eight chromosomes of the ancestral crucifer karyotype and provides a good reference point for comparative genome studies across the Brassicaceae. We compared morphological and physiological traits between C. hirsuta and A. thaliana and analysed natural variation in stamen number in which lateral stamen loss is a species characteristic of C. hirsuta. We constructed a set of recombinant inbred lines and detected eight quantitative trait loci that can explain stamen number variation in this population. We found clear phylogeographic structure to the genetic variation in C. hirsuta, thus providing a context within which to address questions about evolutionary changes that link genotype with phenotype and the environment.


Asunto(s)
Cardamine/genética , Cromosomas de las Plantas/genética , Variación Genética , Genoma de Planta/genética , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/fisiología , Brassicaceae/citología , Brassicaceae/genética , Brassicaceae/fisiología , Cardamine/citología , Cardamine/fisiología , Ambiente , Evolución Molecular , Genotipo , Cariotipo , Fenotipo , Filogeografía , Componentes Aéreos de las Plantas/citología , Componentes Aéreos de las Plantas/genética , Componentes Aéreos de las Plantas/fisiología , Raíces de Plantas/citología , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Sitios de Carácter Cuantitativo , Transcriptoma
3.
Funct Plant Biol ; 33(8): 757-763, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32689286

RESUMEN

The genomes of several legume species contain two Phantastica-like genes. Previous studies on leaf development have found that Phantastica confers leaf blade adaxial identity in plant species with simple leaves and leaflet adaxial identity in pea (Pisum sativum L.), a legume with compound leaves. Previous characterisation of the phantastica mutant of pea, crispa, showed it had radialised leaflets, but stipules were not radialised. This suggested either that mutation of a second redundant gene was required for radialisation of stipules, or, that a null mutation was required. Previously characterised crispa mutants may not have exhibited radialised stipules because they were weak alleles. In this work we show that pea has a second Phantastica-like gene, which lies on a different chromosome to Crispa. The second gene was found to be a pseudogene in several genotypes of pea, therefore it would not have a role in conferring stipule adaxial identity. A new deletion mutant, crispa-4 was identified. The mutant has radialised stipules and leaflets, showing that Crispa confers adaxial identity on both these organs in pea. The nucleotide sequence data reported here are in the EMBL and GenBank Nucleotide Databases under the accession numbers DQ486060 (JI 2822), DQ486061 (JI 15), DQ486062 (JI 281) and DQ486063 (JI 399).

4.
Plant Cell ; 17(4): 1046-60, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15749758

RESUMEN

Pinnate compound leaves have laminae called leaflets distributed at intervals along an axis, the rachis, whereas simple leaves have a single lamina. In simple- and compound-leaved species, the PHANTASTICA (PHAN) gene is required for lamina formation. Antirrhinum majus mutants lacking a functional gene develop abaxialized, bladeless adult leaves. Transgenic downregulation of PHAN in the compound tomato (Solanum lycopersicum) leaf results in an abaxialized rachis without leaflets. The extent of PHAN gene expression was found to be correlated with leaf morphology in diverse compound-leaved species; pinnate leaves had a complete adaxial domain of PHAN gene expression, and peltate leaves had a diminished domain. These previous studies predict the form of a compound-leaved phan mutant to be either peltate or an abaxialized rachis. Here, we characterize crispa, a phan mutant in pea (Pisum sativum), and find that the compound leaf remains pinnate, with individual leaflets abaxialized, rather than the whole leaf. The mutant develops ectopic stipules on the petiole-rachis axis, which are associated with ectopic class 1 KNOTTED1-like homeobox (KNOX) gene expression, showing that the interaction between CRISPA and the KNOX gene PISUM SATIVUM KNOTTED2 specifies stipule boundaries. KNOX and CRISPA gene expression patterns indicate that the mechanism of pea leaf initiation is more like Arabidopsis thaliana than tomato.


Asunto(s)
Mutación/genética , Pisum sativum/genética , Hojas de la Planta/genética , Plantas Modificadas Genéticamente/genética , Regulación del Desarrollo de la Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Microscopía Electrónica de Rastreo , Datos de Secuencia Molecular , Pisum sativum/crecimiento & desarrollo , Pisum sativum/metabolismo , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/ultraestructura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA