Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Inherit Metab Dis ; 43(3): 586-601, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31943253

RESUMEN

ß-Cyclodextrin (ß-CD) is being considered a promising therapy for Niemann-Pick C (NPC) disease because of its ability to mobilise the entrapped cholesterol from lysosomes, however, a major limitation is its inability to cross the blood-brain barrier (BBB) and address the central nervous system (CNS) manifestations of the disease. Considering this, we aimed to design nanoparticles able to cross the BBB and deliver ß-CD into the CNS lysosomes. The physicochemical characteristics of ß-CD-loaded nanoparticles were evaluated by dynamic light scattering, small-angle X-ray scattering, and cryogenic transmission electron microscopy. The in vitro analyses were performed with NPC dermal fibroblasts and the ß-CD-loaded nanoparticles were tracked in vivo. The nanoparticles showed a mean diameter around 120 nm with a disordered bicontinuous inner structure. The nanoparticles did not cause decrease in cell viability, impairment in the antioxidant enzymes activity, damage to biomolecules or release of reactive species in NPC dermal fibroblasts; also, they did not induce genotoxicity or alter the mitochondrial function in healthy fibroblasts. The ß-CD-loaded nanoparticles were taken up by lysosomes reducing the cholesterol accumulated in NPC fibroblasts and reached the CNS of mice more intensely than other organs, demonstrating advantages compared to the free ß-CD. The results demonstrated the potential of the ß-CD-loaded nanoparticles in reducing the brain impairment of NPC.


Asunto(s)
Colesterol/metabolismo , Nanopartículas/administración & dosificación , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , beta-Ciclodextrinas/administración & dosificación , Animales , Transporte Biológico , Estudios de Casos y Controles , Niño , Femenino , Fibroblastos/efectos de los fármacos , Humanos , Lisosomas/metabolismo , Masculino , Ratones , Enfermedad de Niemann-Pick Tipo C/metabolismo , beta-Ciclodextrinas/farmacología
2.
Eur J Pharm Biopharm ; 133: 96-103, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30315863

RESUMEN

Lysosomal Storage Disorders (LSDs) are characterized by an abnormal accumulation of substrates within the lysosome and comprise more than 50 genetic disorders with a frequency of 1:5000 live births. Nanotechnology may be a promising way to circumvent the drawbacks of the current therapies for lysosomal diseases. The blood circulation time and bioavailability of the enzymes or drugs could be improved by inserting them in nanocarriers, which could decrease and/or avoid the need of frequent intravenous infusions along with the minimization or elimination of associated immunogenic responses. Considering the exposed, we aimed to build monoolein-based nanoparticles stabilized by polysorbate 80 as a smart platform able to reach the central nervous system (CNS) to deliver drugs or enzymes inside lysosomes. We developed and characterized the nanoparticles by dynamic light scattering (DLS), small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (Cryo-TEM). The nanoparticles showed a diameter of 115 nm, which is compatible with in vivo application. The SAXS patterns of the formulations displayed a single broad correlation peak that was fitted to the Teubner-Strey model confirming that disordered bicontinuous structures were obtained. Cryo-TEM images corroborated this finding and showed nanoparticles with size values that are similar to those determined by DLS. Furthermore, the nanoparticles did not present cytotoxicity when they were incubated with human fibroblasts, and demonstrated hemolytic activity proportional to the negative control, proving to be safe for parenteral administration. Through the use of a fluorescent dye to track the nanoparticles inside the cell, we demonstrated that they reached lysosomes after 1 h of treatment. More interestingly, the fluorescent dye was detected in the CNS of mice just after 3 h of treatment. The nanoparticles show great potential to improve the treatment of LSDs with brain impairment, acting as a smart platform to targeted delivery of drugs or enzymes.


Asunto(s)
Sistema Nervioso Central/efectos de los fármacos , Glicéridos/química , Enfermedades por Almacenamiento Lisosomal/tratamiento farmacológico , Nanopartículas/química , Animales , Línea Celular , Sistemas de Liberación de Medicamentos/métodos , Humanos , Lisosomas/efectos de los fármacos , Masculino , Ratones , Nanotecnología/métodos , Dispersión del Ángulo Pequeño , Difracción de Rayos X/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA