Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Radiology ; 306(1): 186-199, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35972360

RESUMEN

Background Prostate Imaging Reporting and Data System (PI-RADS) version 2.0 requires multiparametric MRI of the prostate, including diffusion-weighted imaging (DWI) and dynamic contrast-enhanced (DCE) imaging sequences; however, the contribution of DCE imaging remains unclear. Purpose To assess whether DCE imaging in addition to apparent diffusion coefficient (ADC) and normalized T2 values improves PI-RADS version 2.0 for prediction of clinically significant prostate cancer (csPCa). Materials and Methods In this retrospective study, clinically reported PI-RADS lesions in consecutive men who underwent 3-T multiparametric MRI (T2-weighted, DWI, and DCE MRI) from May 2015 to September 2016 were analyzed quantitatively and compared with systematic and targeted MRI-transrectal US fusion biopsy. The normalized T2 signal (nT2), ADC measurement, mean early-phase DCE signal (mDCE), and heuristic DCE parameters were calculated. Logistic regression analysis indicated the most predictive DCE parameters for csPCa (Gleason grade group ≥2). Receiver operating characteristic parameter models were compared using the Obuchowski test. Recursive partitioning analysis determined ADC and mDCE value ranges for combined use with PI-RADS. Results Overall, 260 men (median age, 64 years [IQR, 58-69 years]) with 432 lesions (csPCa [n = 152] and no csPCa [n = 280]) were included. The mDCE parameter was predictive of csPCa when accounting for the ADC and nT2 parameter in the peripheral zone (odds ratio [OR], 1.76; 95% CI: 1.30, 2.44; P = .001) but not the transition zone (OR, 1.17; 95% CI: 0.81, 1.69; P = .41). Recursive partitioning analysis selected an ADC cutoff of 0.897 × 10-3 mm2/sec (P = .04) as a classifier for peripheral zone lesions with a PI-RADS score assessed on the ADC map (hereafter, ADC PI-RADS) of 3. The mDCE parameter did not differentiate ADC PI-RADS 3 lesions (P = .11), but classified lesions with ADC PI-RADS scores greater than 3 with low ADC values (less than 0.903 × 10-3 mm2/sec, P < .001) into groups with csPCa rates of 70% and 97% (P = .008). A lesion size cutoff of 1.5 cm and qualitative DCE parameters were not defined as classifiers according to recursive partitioning (P > .05). Conclusion Quantitative or qualitative dynamic contrast-enhanced MRI was not relevant for Prostate Imaging Reporting and Data System (PI-RADS) 3 lesion risk stratification, while quantitative apparent diffusion coefficient (ADC) values were helpful in upgrading PI-RADS 3 and PI-RADS 4 lesions. Quantitative ADC measurement may be more important for risk stratification than current methods in future versions of PI-RADS. © RSNA, 2022 Online supplemental material is available for this article See also the editorial by Goh in this issue.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Persona de Mediana Edad , Neoplasias de la Próstata/patología , Imagen por Resonancia Magnética/métodos , Estudios Retrospectivos , Imagen de Difusión por Resonancia Magnética , Próstata/patología
2.
BMC Med Imaging ; 20(1): 94, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32767967

RESUMEN

BACKGROUND: To analyse the influence of whole body (wb)-MRI on patient management compared to routine diagnostic tests in patients with fever of unknown origin (FUO). METHODS: Twenty-four patients with FUO, defined as illness of more than three weeks with fever greater than 38.3 °C, underwent wb-MRI at a 1.5 T MR-system. The MR-protocol consisted of the following sequences: axial T1 VIBE, coronal T2-TIRM and a coronal echoplanar diffusion weighted sequence (overall acquisition time 29:39 min:s). Furthermore, laboratory findings, chest-x-ray, abdominal ultrasound, CT-scans and/or PET-CT scans were evaluated and compared to the wb-MRI findings in regard to treatment changes. RESULTS: Wb-MRI yielded a correct diagnosis in 70% of the patients. In 46% the inflammatory focus was exclusively detected by wb-MRI. Focus detection by wb-MRI led to a subsequent change of the clinical management in 92% of the patients. In 6 patients both a wb-MRI and a PET-CT were performed yielding the correct diagnosis in the same 4 of 6 patients for both imaging modalities. CONCLUSIONS: Wb-MRI appears to be of value in the evaluation of FUO patients, allowing for optimized treatment by increasing diagnostic certainty. Due to its lack of nephrotoxicity and ionizing radiation it may be preferred over standard imaging techniques and PET-CT in the future. However, given the low number of patients in our trial, further prospective studies have to be performed to confirm our results.


Asunto(s)
Pruebas Diagnósticas de Rutina/métodos , Fiebre de Origen Desconocido/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Imagen de Cuerpo Entero/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Estudios de Factibilidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radiografía Torácica , Estudios Retrospectivos , Sensibilidad y Especificidad , Tomografía Computarizada por Rayos X , Ultrasonografía , Adulto Joven
4.
Eur J Radiol ; 167: 111026, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37639843

RESUMEN

PURPOSE: According to PI-RADS v2.1, T2-weighted imaging (T2WI) is the dominant sequence for transition zone (TZ) lesions. This study aimed to assess, whether diffusion-weighted imaging (DWI) information influences the assignment of T2WI scores. METHOD: Out of 283 prostate MRI examinations with correlated biopsy results, fourty-four patients were selected retrospectively: first, 22 patients with a TZ lesion with T2WI and DWI scores ≥ 4, to represent lesions with unequivocal suspicion on T2WI and DWI. Second, 22 additional patients with TZ lesions of similar T2WI appearance but with corresponding DWI score ≤ 3 were added as control. Four residents and one board-certified radiologist each performed two assessments of the included patients: First, only T2WI was available (T2-only read); second, both T2WI and DWI sequences were available (biparametric read). Lesion scores were assessed using Wilcoxon signed-rank test, inter-reader agreement using weighted kappa and Kendall's W statistics, and sensitivity/specificity using McNemar test. RESULTS: The T2WI scores were significantly different between the T2-only and biparametric read for 3 out of 4 residents (p ≤ 0.049) but not for the radiologist. The overall PI-RADS scores derived from the two reading sessions differed considerably for 35/220 cases (all readers pooled). Inter-reader agreement was fair for the T2WI and overall PI-RADS scores (mean kappa 0.27-0.30) and moderate for the DWI scores (mean kappa 0.43). CONCLUSIONS: For inexperienced readers, assessment of T2WI is variable and potentially biased by availability of DWI information, which can lead to changes of overall PI-RADS score and consequently clinical management. Assessment of T2WI should be performed before reviewing DWI to ensure non-biased interpretation of TZ lesions in the dominant sequence.


Asunto(s)
Imagen por Resonancia Magnética , Neoplasias de la Próstata , Masculino , Humanos , Próstata/diagnóstico por imagen , Estudios Retrospectivos , Neoplasias de la Próstata/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética
5.
Rofo ; 194(9): 975-982, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35211930

RESUMEN

BACKGROUND: Perfusion MRI is a well-established imaging modality with a multitude of applications in oncological and cardiovascular imaging. Clinically used processing methods, while stable and robust, have remained largely unchanged in recent years. Despite promising results from novel methods, their relatively minimal improvement compared to established methods did not generally warrant significant changes to clinical perfusion processing. RESULTS AND CONCLUSION: Machine learning in general and deep learning in particular, which are currently revolutionizing computer-aided diagnosis, may carry the potential to change this situation and truly capture the potential of perfusion imaging. Recent advances in the training of recurrent neural networks make it possible to predict and classify time series data with high accuracy. Combining physics-based tissue models and deep learning, using either physics-informed neural networks or universal differential equations, simplifies the training process and increases the interpretability of the resulting models. Due to their versatility, these methods will potentially be useful in bridging the gap between microvascular architecture and perfusion parameters, akin to MR fingerprinting in structural MR imaging. Still, further research is urgently needed before these methods may be used in clinical practice. KEY POINTS: · Machine learning offers promising methods for processing of perfusion data.. · Recurrent neural networks can classify time series with high accuracy.. · Data augmentation is essentially especially when using small datasets.. CITATION FORMAT: · Rotkopf LT, Zhang KS, Tavakoli AA et al. Quantitative Analysis of DCE and DSC-MRI: From Kinetic Modeling to Deep Learning. Fortschr Röntgenstr 2022; 194: 975 - 982.


Asunto(s)
Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador , Aprendizaje Automático , Angiografía por Resonancia Magnética , Imagen por Resonancia Magnética , Redes Neurales de la Computación
6.
Clin Imaging ; 83: 33-40, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34953309

RESUMEN

PURPOSE: To compare image quality of an optimized diffusion weighted imaging (DWI) sequence with advanced post-processing and motion correction (advanced-EPI) to a standard DWI protocol (standard-EPI) in pancreatic imaging. MATERIALS AND METHODS: 62 consecutive patients underwent abdominal MRI at 1.5 T were included in this retrospective analysis of data collected as part of an IRB approved study. All patients received a standard-EPI and an advanced-EPI DWI with advanced post-processing and motion correction. Two blinded radiologists evaluated the parameters image quality, detail of parenchyma, sharpness of boundaries and discernibility from adjacent structures on b = 900 s/mm2 images using a Likert-like scale. Segmentation of pancreatic head, body and tail were obtained and apparent diffusion coefficient (ADC) was calculated separately for each region. Apparent tissue-to-background ratio (TBR) was calculated at b = 50 s/mm2 and at b = 900 s/mm2. RESULTS: The advanced-EPI yielded significantly higher scores for pancreatic parameters of image quality, detail level of parenchyma, sharpness of boundaries and discernibility from adjacent structures in comparison to standard-EPI (p < 0.001 for all, kappa = [0.46,0.71]) and was preferred in 96% of the cases when directly compared. ADC of the pancreas was 7% lower in advanced-EPI (1.236 ± 0.152 vs. 1.146 ± 0.126 µm2/ms, p < 0.001). ADC in the pancreatic tail was significantly lower for both sequences compared to head and body (all p < 0.001). There was comparable TBR for both sequences at b = 50 s/mm2 (standard-EPI: 19.0 ± 5.9 vs. advanced-EPI: 19.0 ± 6.4, p = 0.96), whereas at b = 900 s/mm2, TBR was 51% higher for advanced-EPI (standard-EPI: 7.1 ± 2.5 vs. advanced-EPI: 10.8 ± 5.1, p < 0.001). CONCLUSION: An advanced DWI sequence might increase image quality for focused imaging of the pancreas and providing improved parenchymal detail levels compared to a standard DWI.


Asunto(s)
Artefactos , Imagen Eco-Planar , Imagen de Difusión por Resonancia Magnética/métodos , Imagen Eco-Planar/métodos , Humanos , Páncreas/diagnóstico por imagen , Reproducibilidad de los Resultados , Estudios Retrospectivos
7.
Invest Radiol ; 57(9): 601-612, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35467572

RESUMEN

OBJECTIVES: The aim of this study was to estimate the prospective utility of a previously retrospectively validated convolutional neural network (CNN) for prostate cancer (PC) detection on prostate magnetic resonance imaging (MRI). MATERIALS AND METHODS: The biparametric (T2-weighted and diffusion-weighted) portion of clinical multiparametric prostate MRI from consecutive men included between November 2019 and September 2020 was fully automatically and individually analyzed by a CNN briefly after image acquisition (pseudoprospective design). Radiology residents performed 2 research Prostate Imaging Reporting and Data System (PI-RADS) assessments of the multiparametric dataset independent from clinical reporting (paraclinical design) before and after review of the CNN results and completed a survey. Presence of clinically significant PC was determined by the presence of an International Society of Urological Pathology grade 2 or higher PC on combined targeted and extended systematic transperineal MRI/transrectal ultrasound fusion biopsy. Sensitivities and specificities on a patient and prostate sextant basis were compared using the McNemar test and compared with the receiver operating characteristic (ROC) curve of CNN. Survey results were summarized as absolute counts and percentages. RESULTS: A total of 201 men were included. The CNN achieved an ROC area under the curve of 0.77 on a patient basis. Using PI-RADS ≥3-emulating probability threshold (c3), CNN had a patient-based sensitivity of 81.8% and specificity of 54.8%, not statistically different from the current clinical routine PI-RADS ≥4 assessment at 90.9% and 54.8%, respectively ( P = 0.30/ P = 1.0). In general, residents achieved similar sensitivity and specificity before and after CNN review. On a prostate sextant basis, clinical assessment possessed the highest ROC area under the curve of 0.82, higher than CNN (AUC = 0.76, P = 0.21) and significantly higher than resident performance before and after CNN review (AUC = 0.76 / 0.76, P ≤ 0.03). The resident survey indicated CNN to be helpful and clinically useful. CONCLUSIONS: Pseudoprospective paraclinical integration of fully automated CNN-based detection of suspicious lesions on prostate multiparametric MRI was demonstrated and showed good acceptance among residents, whereas no significant improvement in resident performance was found. General CNN performance was preserved despite an observed shift in CNN calibration, identifying the requirement for continuous quality control and recalibration.


Asunto(s)
Aprendizaje Profundo , Neoplasias de la Próstata , Radiología , Humanos , Biopsia Guiada por Imagen/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Próstata/diagnóstico por imagen , Próstata/patología , Neoplasias de la Próstata/patología , Estudios Retrospectivos
8.
Invest Radiol ; 56(2): 94-102, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-32930560

RESUMEN

OBJECTIVES: The aim of this study was to assess quantitative ultra-high b-value (UHB) diffusion magnetic resonance imaging (MRI)-derived parameters in comparison to standard clinical apparent diffusion coefficient (SD-ADC-2b-1000, SD-ADC-2b-1500) for the prediction of clinically significant prostate cancer, defined as Gleason Grade Group greater than or equal to 2. MATERIALS AND METHODS: Seventy-three patients who underwent 3-T prostate MRI with diffusion-weighted imaging acquired at b = 50/500/1000/1500s/mm2 and b = 100/500/1000/1500/2250/3000/4000 s/mm2 were included. Magnetic resonance lesions were segmented manually on individual sequences, then matched to targeted transrectal ultrasonography/MRI fusion biopsies. Monoexponential 2-point and multipoint fits of standard diffusion and of UHB diffusion were calculated with incremental b-values. Furthermore, a kurtosis fit with parameters Dapp and Kapp with incremental b-values was obtained. Each parameter was examined for prediction of clinically significant prostate cancer using bootstrapped receiver operating characteristics and decision curve analysis. Parameter models were compared using Vuong test. RESULTS: Fifty of 73 men (age, 66 years [interquartile range, 61-72]; prostate-specific antigen, 6.6 ng/mL [interquartile range, 5-9.7]) had 64 MRI-detected lesions. The performance of SD-ADC-2b-1000 (area under the curve, 0.82) and SD-ADC-2b-1500 (area under the curve, 0.82) was not statistically different (P = 0.99), with SD-ADC-2b-1500 selected as reference. Compared with the reference model, none of the 19 tested logistic regression parameter models including multipoint and 2-point UHB-ADC, Dapp, and Kapp with incremental b-values of up to 4000 s/mm2 outperformed SD-ADC-2b-1500 (all P's > 0.05). Decision curve analysis confirmed these results indicating no higher net benefit for UHB parameters in comparison to SD-ADC-2b-1500 in the clinically important range from 3% to 20% of cancer threshold probability. Net reduction analysis showed no reduction of MR lesions requiring biopsy. CONCLUSIONS: Despite evaluation of a large b-value range and inclusion of 2-point, multipoint, and kurtosis models, none of the parameters provided better predictive performance than standard 2-point ADC measurements using b-values 50/1000 or 50/1500. Our results suggest that most of the diagnostic benefits available in diffusion MRI are already represented in an ADC composed of one low and one 1000 to 1500 s/mm2 b-value.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Neoplasias de la Próstata , Anciano , Humanos , Biopsia Guiada por Imagen , Imagen por Resonancia Magnética , Masculino , Neoplasias de la Próstata/diagnóstico por imagen
9.
Rofo ; 193(5): 559-573, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33212541

RESUMEN

PURPOSE: A recently developed deep learning model (U-Net) approximated the clinical performance of radiologists in the prediction of clinically significant prostate cancer (sPC) from prostate MRI. Here, we compare the agreement between lesion segmentations by U-Net with manual lesion segmentations performed by different radiologists. MATERIALS AND METHODS: 165 patients with suspicion for sPC underwent targeted and systematic fusion biopsy following 3 Tesla multiparametric MRI (mpMRI). Five sets of segmentations were generated retrospectively: segmentations of clinical lesions, independent segmentations by three radiologists, and fully automated bi-parametric U-Net segmentations. Per-lesion agreement was calculated for each rater by averaging Dice coefficients with all overlapping lesions from other raters. Agreement was compared using descriptive statistics and linear mixed models. RESULTS: The mean Dice coefficient for manual segmentations showed only moderate agreement at 0.48-0.52, reflecting the difficult visual task of determining the outline of otherwise jointly detected lesions. U-net segmentations were significantly smaller than manual segmentations (p < 0.0001) and exhibited a lower mean Dice coefficient of 0.22, which was significantly lower compared to manual segmentations (all p < 0.0001). These differences remained after correction for lesion size and were unaffected between sPC and non-sPC lesions and between peripheral and transition zone lesions. CONCLUSION: Knowledge of the order of agreement of manual segmentations of different radiologists is important to set the expectation value for artificial intelligence (AI) systems in the task of prostate MRI lesion segmentation. Perfect agreement (Dice coefficient of one) should not be expected for AI. Lower Dice coefficients of U-Net compared to manual segmentations are only partially explained by smaller segmentation sizes and may result from a focus on the lesion core and a small relative lesion center shift. Although it is primarily important that AI detects sPC correctly, the Dice coefficient for overlapping lesions from multiple raters can be used as a secondary measure for segmentation quality in future studies. KEY POINTS: · Intermediate human Dice coefficients reflect the difficulty of outlining jointly detected lesions.. · Lower Dice coefficients of deep learning motivate further research to approximate human perception.. · Comparable predictive performance of deep learning appears independent of Dice agreement.. · Dice agreement independent of significant cancer presence indicates indistinguishability of some benign imaging findings.. · Improving DWI to T2 registration may improve the observed U-Net Dice coefficients.. CITATION FORMAT: · Schelb P, Tavakoli AA, Tubtawee T et al. Comparison of Prostate MRI Lesion Segmentation Agreement Between Multiple Radiologists and a Fully Automatic Deep Learning System. Fortschr Röntgenstr 2021; 193: 559 - 573.


Asunto(s)
Aprendizaje Profundo , Imagen por Resonancia Magnética , Próstata , Radiólogos , Inteligencia Artificial , Humanos , Masculino , Próstata/diagnóstico por imagen , Radiólogos/normas , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA