Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Cell ; 169(1): 148-160.e15, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28340340

RESUMEN

Type 2 diabetes (T2D) is a worldwide epidemic with a medical need for additional targeted therapies. Suppression of hepatic glucose production (HGP) effectively ameliorates diabetes and can be exploited for its treatment. We hypothesized that targeting PGC-1α acetylation in the liver, a chemical modification known to inhibit hepatic gluconeogenesis, could be potentially used for treatment of T2D. Thus, we designed a high-throughput chemical screen platform to quantify PGC-1α acetylation in cells and identified small molecules that increase PGC-1α acetylation, suppress gluconeogenic gene expression, and reduce glucose production in hepatocytes. On the basis of potency and bioavailability, we selected a small molecule, SR-18292, that reduces blood glucose, strongly increases hepatic insulin sensitivity, and improves glucose homeostasis in dietary and genetic mouse models of T2D. These studies have important implications for understanding the regulatory mechanisms of glucose metabolism and treatment of T2D.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Gluconeogénesis/efectos de los fármacos , Hipoglucemiantes/administración & dosificación , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/antagonistas & inhibidores , Acetilación , Animales , Glucemia/metabolismo , Células Cultivadas , Glucosa/metabolismo , Factor Nuclear 4 del Hepatocito/metabolismo , Hepatocitos/metabolismo , Ensayos Analíticos de Alto Rendimiento , Resistencia a la Insulina , Ratones , Factores de Transcripción p300-CBP/metabolismo
2.
Mol Cell ; 64(1): 163-175, 2016 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-27666594

RESUMEN

Mitochondrial diseases comprise a heterogeneous group of genetically inherited disorders that cause failures in energetic and metabolic function. Boosting residual oxidative phosphorylation (OXPHOS) activity can partially correct these failures. Herein, using a high-throughput chemical screen, we identified the bromodomain inhibitor I-BET 525762A as one of the top hits that increases COX5a protein levels in complex I (CI) mutant cybrid cells. In parallel, bromodomain-containing protein 4 (BRD4), a target of I-BET 525762A, was identified using a genome-wide CRISPR screen to search for genes whose loss of function rescues death of CI-impaired cybrids grown under conditions requiring OXPHOS activity for survival. We show that I-BET525762A or loss of BRD4 remodeled the mitochondrial proteome to increase the levels and activity of OXPHOS protein complexes, leading to rescue of the bioenergetic defects and cell death caused by mutations or chemical inhibition of CI. These studies show that BRD4 inhibition may have therapeutic implications for the treatment of mitochondrial diseases.


Asunto(s)
Benzodiazepinas/farmacología , Grupo Citocromo c/genética , Complejo I de Transporte de Electrón/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Proteínas de Ciclo Celular , Fusión Celular , Línea Celular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Grupo Citocromo c/metabolismo , Complejo I de Transporte de Electrón/deficiencia , Complejo IV de Transporte de Electrones , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ensayos Analíticos de Alto Rendimiento , Humanos , Metaboloma , Metabolómica , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Proteínas Mitocondriales/metabolismo , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Transducción de Señal , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(36): 22204-22213, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32848060

RESUMEN

The peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) is a transcriptional coactivator that controls expression of metabolic/energetic genes, programming cellular responses to nutrient and environmental adaptations such as fasting, cold, or exercise. Unlike other coactivators, PGC-1α contains protein domains involved in RNA regulation such as serine/arginine (SR) and RNA recognition motifs (RRMs). However, the RNA targets of PGC-1α and how they pertain to metabolism are unknown. To address this, we performed enhanced ultraviolet (UV) cross-linking and immunoprecipitation followed by sequencing (eCLIP-seq) in primary hepatocytes induced with glucagon. A large fraction of RNAs bound to PGC-1α were intronic sequences of genes involved in transcriptional, signaling, or metabolic function linked to glucagon and fasting responses, but were not the canonical direct transcriptional PGC-1α targets such as OXPHOS or gluconeogenic genes. Among the top-scoring RNA sequences bound to PGC-1α were Foxo1, Camk1δ, Per1, Klf15, Pln4, Cluh, Trpc5, Gfra1, and Slc25a25 PGC-1α depletion decreased a fraction of these glucagon-induced messenger RNA (mRNA) transcript levels. Importantly, knockdown of several of these genes affected glucagon-dependent glucose production, a PGC-1α-regulated metabolic pathway. These studies show that PGC-1α binds to intronic RNA sequences, some of them controlling transcript levels associated with glucagon action.


Asunto(s)
Glucagón/metabolismo , Glucagón/farmacología , Hepatocitos/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Células Cultivadas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Gluconeogénesis/fisiología , Glucosa/metabolismo , Guanosina Trifosfato/metabolismo , Hígado/metabolismo , Masculino , Metabolómica , Ratones , Ratones Endogámicos C57BL , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Unión Proteica , Transcriptoma
4.
Curr Diab Rep ; 19(10): 98, 2019 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-31494755

RESUMEN

PURPOSE OF REVIEW: The purpose of this review is to provide a brief summary of recent advances in our understanding of liver metabolism. The critical role of the liver in controlling whole-body energy homeostasis makes such understanding crucial to efficiently design new treatments for metabolic syndrome diseases, including type 2 diabetes (T2D). RECENT FINDINGS: Significant advances have been made regarding our understanding of the direct and indirect effects of insulin on hepatic metabolism and the communication between the liver and other tissues. Moreover, the catabolic functions of glucagon, as well as the importance of hepatic redox status for the regulation of glucose production, are emerging as potential targets to reduce hyperglycemia. A resolution to the long-standing question "insulin suppression of hepatic glucose production, direct or indirect effect?" is starting to emerge. New advances in our understanding of important fasting-induced hepatic metabolic fluxes may help design better therapies for T2D.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético/fisiología , Glucosa/metabolismo , Hipoglucemiantes/farmacología , Insulina/farmacología , Hígado/metabolismo , Diabetes Mellitus Tipo 2/terapia , Metabolismo Energético/efectos de los fármacos , Predicción , Glucosa/biosíntesis , Homeostasis/efectos de los fármacos , Homeostasis/fisiología , Humanos , Hipoglucemiantes/uso terapéutico , Insulina/fisiología , Insulina/uso terapéutico , Hígado/efectos de los fármacos
5.
J Biol Chem ; 292(5): 2032-2045, 2017 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-27956550

RESUMEN

Eukaryotic elongation factor 2 kinase (eEF-2K), the only calmodulin (CaM)-dependent member of the unique α-kinase family, impedes protein synthesis by phosphorylating eEF-2. We recently identified Thr-348 and Ser-500 as two key autophosphorylation sites within eEF-2K that regulate its activity. eEF-2K is regulated by Ca2+ ions and multiple upstream signaling pathways, but how it integrates these signals into a coherent output, i.e. phosphorylation of eEF-2, is unclear. This study focuses on understanding how the post-translational phosphorylation of Ser-500 integrates with Ca2+ and CaM to regulate eEF-2K. CaM is shown to be absolutely necessary for efficient activity of eEF-2K, and Ca2+ is shown to enhance the affinity of CaM toward eEF-2K. Ser-500 is found to undergo autophosphorylation in cells treated with ionomycin and is likely also targeted by PKA. In vitro, autophosphorylation of Ser-500 is found to require Ca2+ and CaM and is inhibited by mutations that compromise binding of phosphorylated Thr-348 to an allosteric binding pocket on the kinase domain. A phosphomimetic Ser-500 to aspartic acid mutation (eEF-2K S500D) enhances the rate of activation (Thr-348 autophosphorylation) by 6-fold and lowers the EC50 for Ca2+/CaM binding to activated eEF-2K (Thr-348 phosphorylated) by 20-fold. This is predicted to result in an elevation of the cellular fraction of active eEF-2K. In support of this mechanism, eEF-2K knock-out MCF10A cells reconstituted with eEF-2K S500D display relatively high levels of phospho-eEF-2 under basal conditions. This study reports how phosphorylation of a regulatory site (Ser-500) integrates with Ca2+ and CaM to influence eEF-2K activity.


Asunto(s)
Calcio/metabolismo , Calmodulina/metabolismo , Quinasa del Factor 2 de Elongación/metabolismo , Sustitución de Aminoácidos , Calmodulina/genética , Línea Celular Tumoral , Quinasa del Factor 2 de Elongación/genética , Humanos , Mutación Missense , Fosforilación/genética , Serina/genética , Serina/metabolismo
6.
J Biol Chem ; 291(20): 10635-45, 2016 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-27022023

RESUMEN

Methionine is an essential sulfur amino acid that is engaged in key cellular functions such as protein synthesis and is a precursor for critical metabolites involved in maintaining cellular homeostasis. In mammals, in response to nutrient conditions, the liver plays a significant role in regulating methionine concentrations by altering its flux through the transmethylation, transsulfuration, and transamination metabolic pathways. A comprehensive understanding of how hepatic methionine metabolism intersects with other regulatory nutrient signaling and transcriptional events is, however, lacking. Here, we show that methionine and derived-sulfur metabolites in the transamination pathway activate the GCN5 acetyltransferase promoting acetylation of the transcriptional coactivator PGC-1α to control hepatic gluconeogenesis. Methionine was the only essential amino acid that rapidly induced PGC-1α acetylation through activating the GCN5 acetyltransferase. Experiments employing metabolic pathway intermediates revealed that methionine transamination, and not the transmethylation or transsulfuration pathways, contributed to methionine-induced PGC-1α acetylation. Moreover, aminooxyacetic acid, a transaminase inhibitor, was able to potently suppress PGC-1α acetylation stimulated by methionine, which was accompanied by predicted alterations in PGC-1α-mediated gluconeogenic gene expression and glucose production in primary murine hepatocytes. Methionine administration in mice likewise induced hepatic PGC-1α acetylation, suppressed the gluconeogenic gene program, and lowered glycemia, indicating that a similar phenomenon occurs in vivo These results highlight a communication between methionine metabolism and PGC-1α-mediated hepatic gluconeogenesis, suggesting that influencing methionine metabolic flux has the potential to be therapeutically exploited for diabetes treatment.


Asunto(s)
Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Gluconeogénesis/efectos de los fármacos , Histona Acetiltransferasas/biosíntesis , Hígado/metabolismo , Metionina/farmacología , Factores de Transcripción/metabolismo , Factores de Transcripción p300-CBP/biosíntesis , Acetilación/efectos de los fármacos , Animales , Gluconeogénesis/genética , Células Hep G2 , Histona Acetiltransferasas/genética , Humanos , Ratones , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Factores de Transcripción/genética , Factores de Transcripción p300-CBP/genética
7.
J Biol Chem ; 289(34): 23901-16, 2014 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-25012662

RESUMEN

Calmodulin (CaM)-dependent eukaryotic elongation factor 2 kinase (eEF-2K) impedes protein synthesis through phosphorylation of eukaryotic elongation factor 2 (eEF-2). It is subject to complex regulation by multiple upstream signaling pathways, through poorly described mechanisms. Precise integration of these signals is critical for eEF-2K to appropriately regulate protein translation rates. Here, an allosteric mechanism comprising two sequential conformations is described for eEF-2K activation. First, Ca(2+)/CaM binds eEF-2K with high affinity (Kd(CaM)(app) = 24 ± 5 nm) to enhance its ability to autophosphorylate Thr-348 in the regulatory loop (R-loop) by > 10(4)-fold (k(auto) = 2.6 ± 0.3 s(-1)). Subsequent binding of phospho-Thr-348 to a conserved basic pocket in the kinase domain potentially drives a conformational transition of the R-loop, which is essential for efficient substrate phosphorylation. Ca(2+)/CaM binding activates autophosphorylated eEF-2K by allosterically enhancing k(cat)(app) for peptide substrate phosphorylation by 10(3)-fold. Thr-348 autophosphorylation results in a 25-fold increase in the specificity constant (k(cat)(app)/K(m)(Pep-S) (app)), with equal contributions from k(cat)(app) and K(m)(Pep-S)(app), suggesting that peptide substrate binding is partly impeded in the unphosphorylated enzyme. In cells, Thr-348 autophosphorylation appears to control the catalytic output of active eEF-2K, contributing more than 5-fold to its ability to promote eEF-2 phosphorylation. Fundamentally, eEF-2K activation appears to be analogous to an amplifier, where output volume may be controlled by either toggling the power switch (switching on the kinase) or altering the volume control (modulating stability of the active R-loop conformation). Because upstream signaling events have the potential to modulate either allosteric step, this mechanism allows for exquisite control of eEF-2K output.


Asunto(s)
Quinasa del Factor 2 de Elongación/metabolismo , Secuencia de Aminoácidos , Calcio/metabolismo , Calmodulina/metabolismo , Línea Celular Tumoral , Quinasa del Factor 2 de Elongación/química , Quinasa del Factor 2 de Elongación/genética , Activación Enzimática , Humanos , Cinética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Fosforilación , Biosíntesis de Proteínas , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Treonina/metabolismo
8.
Bioorg Med Chem ; 22(17): 4910-6, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25047940

RESUMEN

A small molecule library of pyrido[2,3-d]pyrimidine-2,4-dione derivatives 6-16 was synthesized from 6-amino-1,3-disubstituted uracils 18, characterized, and screened for inhibitory activity against eukaryotic elongation factor-2 kinase (eEF-2K). To understand the binding pocket of eEF-2K, structural modifications of the pyrido[2,3-d]pyrimidine were made at three regions (R(1), R(2), and R(3)). A homology model of eEF-2K was created, and compound 6 (A-484954, Abbott laboratories) was docked in the catalytic domain of eEF-2K. Compounds 6 (IC50=420nM) and 9 (IC50=930nM) are found to be better molecules in this preliminary series of pyrido[2,3-d]pyrimidine analogs. eEF-2K activity in MDA-MB-231 breast cancer cells is significantly reduced by compound 6, to a lesser extent by compound 9, and is unaffected by compound 12. Similar inhibitory results are observed when eEF-2K activity is stimulated by 2-deoxy-d-glucose (2-DOG) treatment, suggesting that compounds 6 and 9 are able to inhibit AMPK-mediated activation of eEF-2K to a notable extent. The results of this work will shed light on the further design and optimization of novel pyrido[2,3-d]pyrimidine analogs as eEF-2K inhibitors.


Asunto(s)
Quinasa del Factor 2 de Elongación/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Pirimidinonas/farmacología , Relación Dosis-Respuesta a Droga , Quinasa del Factor 2 de Elongación/metabolismo , Humanos , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Piridinas/síntesis química , Piridinas/química , Pirimidinonas/síntesis química , Pirimidinonas/química , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad , Células Tumorales Cultivadas
9.
Biochemistry ; 51(10): 2100-12, 2012 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-22352903

RESUMEN

Evidence that elongation factor 2 kinase (eEF-2K) has potential as a target for anticancer therapy and possibly for the treatment of depression is emerging. Here the steady-state kinetic mechanism of eEF-2K is presented using a peptide substrate and is shown to conform to an ordered sequential mechanism with ATP binding first. Substrate inhibition by the peptide was observed and revealed to be competitive with ATP, explaining the observed ordered mechanism. Several small molecules are reported to inhibit eEF-2K activity with the most notable being the histidine kinase inhibitor NH125, which has been used in a number of studies to characterize eEF-2K activity in cells. While NH125 was previously reported to inhibit eEF-2K in vitro with an IC(50) of 60 nM, its mechanism of action was not established. Using the same kinetic assay, the ability of an authentic sample of NH125 to inhibit eEF-2K was assessed over a range of substrate and inhibitor concentrations. A typical dose-response curve for the inhibition of eEF-2K by NH125 is best fit to an IC(50) of 18 ± 0.25 µM and a Hill coefficient of 3.7 ± 0.14, suggesting that NH125 is a weak inhibitor of eEF-2K under the experimental conditions of a standard in vitro kinase assay. To test the possibility that NH125 is a potent inhibitor of eEF2 phosphorylation, we assessed its ability to inhibit the phosphorylation of eEF2. Under standard kinase assay conditions, NH125 exhibits a similar weak ability to inhibit the phosphorylation of eEF2 by eEF-2K. Notably, the activity of NH125 is severely abrogated by the addition of 0.1% Triton to the kinase assay through a process that can be reversed upon dilution. These studies suggest that NH125 is a nonspecific colloidal aggregator in vitro, a notion further supported by the observation that NH125 inhibits other protein kinases, such as ERK2 and TRPM7 in a manner similar to that of eEF-2K. As NH125 is reported to inhibit eEF-2K in a cellular environment, its ability to inhibit eEF2 phosphorylation was assessed in MDA-MB-231 breast cancer, A549 lung cancer, and HEK-293T cell lines using a Western blot approach. No sign of a decrease in the level of eEF2 phosphorylation was observed up to 12 h following addition of NH125 to the media. Furthermore, contrary to the previously reported literatures, NH125 induced the phosphorylation of eEF-2.


Asunto(s)
Quinasa del Factor 2 de Elongación/antagonistas & inhibidores , Imidazoles/farmacología , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Artefactos , Línea Celular , Relación Dosis-Respuesta a Droga , Quinasa del Factor 2 de Elongación/genética , Quinasa del Factor 2 de Elongación/metabolismo , Células HEK293 , Humanos , Imidazoles/administración & dosificación , Técnicas In Vitro , Cinética , Datos de Secuencia Molecular , Péptidos/química , Péptidos/metabolismo , Fosforilación , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
10.
Biochemistry ; 51(11): 2232-45, 2012 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-22329831

RESUMEN

Eukaryotic elongation factor 2 kinase (eEF-2K) is an atypical protein kinase regulated by Ca(2+) and calmodulin (CaM). Its only known substrate is eukaryotic elongation factor 2 (eEF-2), whose phosphorylation by eEF-2K impedes global protein synthesis. To date, the mechanism of eEF-2K autophosphorylation has not been fully elucidated. To investigate the mechanism of autophosphorylation, human eEF-2K was coexpressed with λ-phosphatase and purified from bacteria in a three-step protocol using a CaM affinity column. Purified eEF-2K was induced to autophosphorylate by incubation with Ca(2+)/CaM in the presence of MgATP. Analyzing tryptic or chymotryptic peptides by mass spectrometry monitored the autophosphorylation over 0-180 min. The following five major autophosphorylation sites were identified: Thr-348, Thr-353, Ser-445, Ser-474, and Ser-500. In the presence of Ca(2+)/CaM, robust phosphorylation of Thr-348 occurs within seconds of addition of MgATP. Mutagenesis studies suggest that phosphorylation of Thr-348 is required for substrate (eEF-2 or a peptide substrate) phosphorylation, but not self-phosphorylation. Phosphorylation of Ser-500 lags behind the phosphorylation of Thr-348 and is associated with the Ca(2+)-independent activity of eEF-2K. Mutation of Ser-500 to Asp, but not Ala, renders eEF-2K Ca(2+)-independent. Surprisingly, this Ca(2+)-independent activity requires the presence of CaM.


Asunto(s)
Calcio/metabolismo , Calmodulina/metabolismo , Quinasa del Factor 2 de Elongación/metabolismo , Serina/genética , Treonina/genética , Secuencia de Aminoácidos , Sitios de Unión , Quinasa del Factor 2 de Elongación/genética , Humanos , Espectrometría de Masas , Datos de Secuencia Molecular , Fosforilación , Treonina/metabolismo
11.
Protein Expr Purif ; 79(2): 237-44, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21605678

RESUMEN

The eukaryotic elongation factor 2 kinase (eEF-2K) modulates the rate of protein synthesis by impeding the elongation phase of translation by inactivating the eukaryotic elongation factor 2 (eEF-2) via phosphorylation. eEF-2K is known to be activated by calcium and calmodulin, whereas the mTOR and MAPK pathways are suggested to negatively regulate kinase activity. Despite its pivotal role in translation regulation and potential role in tumor survival, the structure, function, and regulation of eEF-2K have not been described in detail. This deficiency may result from the difficulty of obtaining the recombinant kinase in a form suitable for biochemical analysis. Here we report the purification and characterization of recombinant human eEF-2K expressed in the Escherichia coli strain Rosetta-gami 2(DE3). Successive chromatography steps utilizing Ni-NTA affinity, anion-exchange, and gel filtration columns accomplished purification. Cleavage of the thioredoxin-His(6)-tag from the N-terminus of the expressed kinase with TEV protease yielded 9 mg of recombinant (G-D-I)-eEF-2K per liter of culture. Light scattering shows that eEF-2K is a monomer of ∼85 kDa. In vitro kinetic analysis confirmed that recombinant human eEF-2K is able to phosphorylate wheat germ eEF-2 with kinetic parameters comparable to the mammalian enzyme.


Asunto(s)
Clonación Molecular/métodos , Quinasa del Factor 2 de Elongación/metabolismo , Factor 2 de Elongación Peptídica/metabolismo , Plásmidos/genética , Biosíntesis de Proteínas/genética , Proteínas Recombinantes/metabolismo , Secuencia de Aminoácidos , Calcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Cromatografía de Afinidad , Cromatografía en Gel , Cromatografía por Intercambio Iónico , Quinasa del Factor 2 de Elongación/genética , Quinasa del Factor 2 de Elongación/aislamiento & purificación , Endopeptidasas/metabolismo , Escherichia coli , Histidina/metabolismo , Humanos , Cinética , Datos de Secuencia Molecular , Oligopéptidos/metabolismo , Fosforilación , Plásmidos/química , Plásmidos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Tiorredoxinas/metabolismo , Transformación Bacteriana
12.
Cell Metab ; 33(3): 598-614.e7, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33592173

RESUMEN

The architecture of cristae provides a spatial mitochondrial organization that contains functional respiratory complexes. Several protein components including OPA1 and MICOS complex subunits organize cristae structure, but upstream regulatory mechanisms are largely unknown. Here, in vivo and in vitro reconstitution experiments show that the endoplasmic reticulum (ER) kinase PERK promotes cristae formation by increasing TOM70-assisted mitochondrial import of MIC19, a critical subunit of the MICOS complex. Cold stress or ß-adrenergic stimulation activates PERK that phosphorylates O-linked N-acetylglucosamine transferase (OGT). Phosphorylated OGT glycosylates TOM70 on Ser94, enhancing MIC19 protein import into mitochondria and promoting cristae formation and respiration. In addition, PERK-activated OGT O-GlcNAcylates and attenuates CK2α activity, which mediates TOM70 Ser94 phosphorylation and decreases MIC19 mitochondrial protein import. We have identified a cold-stress inter-organelle PERK-OGT-TOM70 axis that increases cell respiration through mitochondrial protein import and subsequent cristae formation. These studies have significant implications in cellular bioenergetics and adaptations to stress conditions.


Asunto(s)
Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , eIF-2 Quinasa/metabolismo , Adipocitos Marrones/citología , Adipocitos Marrones/efectos de los fármacos , Adipocitos Marrones/metabolismo , Animales , Quinasa de la Caseína II/metabolismo , Frío , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Glicosilación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales/genética , Proteínas Mitocondriales/genética , N-Acetilglucosaminiltransferasas/genética , Fosforilación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas , ARN Guía de Kinetoplastida/metabolismo , eIF-2 Quinasa/antagonistas & inhibidores , eIF-2 Quinasa/deficiencia , eIF-2 Quinasa/genética
13.
J Clin Invest ; 130(2): 853-862, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31929186

RESUMEN

Oncogene-targeted and immune checkpoint therapies have revolutionized the clinical management of malignant melanoma and now offer hope to patients with advanced disease. Intimately connected to patients' overall clinical risk is whether the initial primary melanoma lesion will metastasize and cause advanced disease, but underlying mechanisms are not entirely understood. A subset of melanomas display heightened peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1α) expression that maintains cell survival cues by promoting mitochondrial function, but also suppresses metastatic spread. Here, we show that PGC1α expression in melanoma cells was silenced by chromatin modifications that involve promoter H3K27 trimethylation. Pharmacological EZH2 inhibition diminished H3K27me3 histone markers, increased PGC1α expression, and functionally suppressed invasion within PGC1α-silenced melanoma cells. Mechanistically, PGC1α silencing activated transcription factor 12 (TCF12), to increase expression of WNT5A, which in turn stabilized YAP protein levels to promote melanoma migration and metastasis. Accordingly, inhibition of components of this transcription-signaling axis, including TCF12, WNT5A, or YAP, blocked melanoma migration in vitro and metastasis in vivo. These results indicate that epigenetic control of melanoma metastasis involved altered expression of PGC1α and an association with the inherent metabolic state of the tumor.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Histonas/metabolismo , Melanoma Experimental/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/biosíntesis , Factores de Transcripción/metabolismo , Proteína Wnt-5a/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Línea Celular Tumoral , Células HEK293 , Histonas/genética , Humanos , Melanoma Experimental/genética , Melanoma Experimental/patología , Ratones , Ratones Desnudos , Invasividad Neoplásica , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Factores de Transcripción/genética , Proteína Wnt-5a/genética , Proteínas Señalizadoras YAP
14.
Cancer Res ; 80(16): 3215-3221, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32606000

RESUMEN

Type 2 diabetes, which is mainly linked to obesity, is associated with increased incidence of liver cancer. We have previously found that in various models of obesity/diabetes, hyperinsulinemia maintains heightened hepatic expression of cyclin D1, suggesting a plausible mechanism linking diabetes and liver cancer progression. Here we show that cyclin D1 is greatly elevated in human livers with diabetes and is among the most significantly upregulated genes in obese/diabetic liver tumors. Liver-specific cyclin D1 deficiency protected obese/diabetic mice against hepatic tumorigenesis, whereas lean/nondiabetic mice developed tumors irrespective of cyclin D1 status. Cyclin D1 dependency positively correlated with liver cancer sensitivity to palbociclib, an FDA-approved CDK4 inhibitor, which was effective in treating orthotopic liver tumors under obese/diabetic conditions. The antidiabetic drug metformin suppressed insulin-induced hepatic cyclin D1 expression and protected against obese/diabetic hepatocarcinogenesis. These results indicate that the cyclin D1-CDK4 complex represents a potential selective therapeutic vulnerability for liver tumors in obese/diabetic patients. SIGNIFICANCE: Obesity/diabetes-associated liver tumors are specifically vulnerable to cyclin D1 deficiency and CDK4 inhibition, suggesting that the obese/diabetic environment confers cancer-selective dependencies that can be therapeutically exploited.


Asunto(s)
Ciclina D1/deficiencia , Diabetes Mellitus Tipo 2/complicaciones , Neoplasias Hepáticas Experimentales/etiología , Obesidad/complicaciones , Animales , Antineoplásicos/farmacología , Ciclina D1/genética , Ciclina D1/metabolismo , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 4 Dependiente de la Ciclina/metabolismo , Hiperinsulinismo/metabolismo , Hipoglucemiantes/farmacología , Neoplasias Hepáticas Experimentales/tratamiento farmacológico , Neoplasias Hepáticas Experimentales/metabolismo , Neoplasias Hepáticas Experimentales/prevención & control , Masculino , Metformina/farmacología , Ratones , Piperazinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Regulación hacia Arriba
15.
Nat Commun ; 10(1): 5232, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31745079

RESUMEN

Recently, the targeting of ERK with ATP-competitive inhibitors has emerged as a potential clinical strategy to overcome acquired resistance to BRAF and MEK inhibitor combination therapies. In this study, we investigate an alternative strategy of targeting the D-recruitment site (DRS) of ERK. The DRS is a conserved region that lies distal to the active site and mediates ERK-protein interactions. We demonstrate that the small molecule BI-78D3 binds to the DRS of ERK2 and forms a covalent adduct with a conserved cysteine residue (C159) within the pocket and disrupts signaling in vivo. BI-78D3 does not covalently modify p38MAPK, JNK or ERK5. BI-78D3 promotes apoptosis in BRAF inhibitor-naive and resistant melanoma cells containing a BRAF V600E mutation. These studies provide the basis for designing modulators of protein-protein interactions involving ERK, with the potential to impact ERK signaling dynamics and to induce cell cycle arrest and apoptosis in ERK-dependent cancers.


Asunto(s)
Dioxanos/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Melanoma/tratamiento farmacológico , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Tiazoles/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Sitios de Unión/genética , Línea Celular Tumoral , Cisteína/genética , Cisteína/metabolismo , Dioxanos/metabolismo , Células HEK293 , Humanos , Sistema de Señalización de MAP Quinasas/genética , Melanoma/genética , Melanoma/metabolismo , Ratones Desnudos , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Simulación de Dinámica Molecular , Unión Proteica/efectos de los fármacos , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Tiazoles/metabolismo
16.
Ann N Y Acad Sci ; 1411(1): 21-35, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28868790

RESUMEN

The coordinated regulation between cellular glucose uptake and endogenous glucose production is indispensable for the maintenance of constant blood glucose concentrations. The liver contributes significantly to this process by altering the levels of hepatic glucose release, through controlling the processes of de novo glucose production (gluconeogenesis) and glycogen breakdown (glycogenolysis). Various nutritional and hormonal stimuli signal to alter hepatic gluconeogenic flux, and suppression of this metabolic pathway during the postprandial state can, to a significant extent, be attributed to insulin. Here, we review some of the molecular mechanisms through which insulin modulates hepatic gluconeogenesis, thus controlling glucose production by the liver to ultimately maintain normoglycemia. Various signaling pathways governed by insulin converge at the level of transcriptional regulation of the key hepatic gluconeogenic genes PCK1 and G6PC, highlighting this as one of the focal mechanisms through which gluconeogenesis is modulated. In individuals with compromised insulin signaling, such as insulin resistance in type 2 diabetes, insulin fails to suppress hepatic gluconeogenesis, even in the fed state; hence, an insight into these insulin-moderated pathways is critical for therapeutic purposes.


Asunto(s)
Gluconeogénesis/fisiología , Insulina/fisiología , Animales , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Regulación de la Expresión Génica , Glucogenólisis , Homeostasis , Humanos , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Resistencia a la Insulina , Hígado/metabolismo , Modelos Animales , Obesidad/metabolismo , Proteínas Quinasas/fisiología , Transducción de Señal , Transcripción Genética
17.
ACS Med Chem Lett ; 8(10): 1072-1076, 2017 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-29057053

RESUMEN

Serotonin (5-hydroxytryptamine, 5-HT) is a critical local regulator of epithelial homeostasis in the breast and exerts its actions through a number of receptors. Dysregulation of serotonin signaling is reported to contribute to breast cancer pathophysiology by enhancing cell proliferation and promoting resistance to apoptosis. Preliminary analyses indicated that the potent 5-HT1B/1D serotonin receptor agonist 5-nonyloxytryptamine (5-NT), a triptan-like molecule, induced cell death in breast cancer cell lines. Thus, we synthesized a series of novel alkyloxytryptamine analogues, several of which decreased the viability of various human cancer cell lines. Proteomic and metabolomic analyses showed that compounds 6 and 10 induced apoptosis and interfered with signaling pathways that regulate protein translation and survival, such as the Akt/mTOR pathway, in triple-negative breast cancer cells.

18.
Nat Rev Drug Discov ; 15(11): 786-804, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27516169

RESUMEN

Type 2 diabetes mellitus is characterized by the dysregulation of glucose homeostasis, resulting in hyperglycaemia. Although current diabetes treatments have exhibited some success in lowering blood glucose levels, their effect is not always sustained and their use may be associated with undesirable side effects, such as hypoglycaemia. Novel antidiabetic drugs, which may be used in combination with existing therapies, are therefore needed. The potential of specifically targeting the liver to normalize blood glucose levels has not been fully exploited. Here, we review the molecular mechanisms controlling hepatic gluconeogenesis and glycogen storage, and assess the prospect of therapeutically targeting associated pathways to treat type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Glucosa/metabolismo , Hipoglucemiantes/administración & dosificación , Hígado/metabolismo , Animales , Sistemas de Liberación de Medicamentos/tendencias , Glucosa/antagonistas & inhibidores , Humanos , Hígado/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
19.
Methods Mol Biol ; 1360: 19-33, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26501899

RESUMEN

Protein kinases have emerged as an important class of therapeutic targets, as they are known to be involved in pathological pathways linked to numerous human disorders. Major efforts to discover kinase inhibitors in both academia and pharmaceutical companies have centered on the development of robust assays and cost-effective approaches to isolate them. Drug discovery procedures often start with hit identification for lead development, by screening a library of chemicals using an appropriate assay in a high-throughput manner. Considering limitations unique to each assay technique and screening capability, intelligent integration of various assay schemes and level of throughput, in addition to the choice of chemical libraries, is the key to success of this initial step. Here, we describe the purification of the protein kinase, eEF-2K, and the utilization of three biochemical assays in the course of identifying small molecules that block its enzymatic reaction.


Asunto(s)
Antineoplásicos/farmacología , Quinasa del Factor 2 de Elongación/antagonistas & inhibidores , Fluorometría/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Mediciones Luminiscentes/métodos , Proteínas de Neoplasias/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Radiometría/métodos , Antineoplásicos/aislamiento & purificación , Quinasa del Factor 2 de Elongación/biosíntesis , Quinasa del Factor 2 de Elongación/aislamiento & purificación , Rayos gamma , Humanos , Indicadores y Reactivos , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/aislamiento & purificación , Neoplasias/enzimología , Radioisótopos de Fósforo/análisis , Inhibidores de Proteínas Quinasas/aislamiento & purificación , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/aislamiento & purificación , Conteo por Cintilación
20.
Structure ; 24(9): 1441-51, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27499441

RESUMEN

Binding of Ca(2+)-loaded calmodulin (CaM) activates eukaryotic elongation factor 2 kinase (eEF-2K) that phosphorylates eEF-2, its only known cellular target, leading to a decrease in global protein synthesis. Here, using an eEF-2K-derived peptide (eEF-2KCBD) that encodes the region necessary for its CaM-mediated activation, we provide a structural basis for their interaction. The striking feature of this association is the absence of Ca(2+) from the CaM C-lobe sites, even under high Ca(2+) conditions. eEF-2KCBD engages CaM largely through the C lobe of the latter in an anti-parallel 1-5-8 hydrophobic mode reinforced by a pair of unique electrostatic contacts. Sparse interactions of eEF-2KCBD with the CaM N lobe results in persisting inter-lobe mobility. A conserved eEF-2K residue (W85) anchors it to CaM by inserting into a deep hydrophobic cavity within the CaM C lobe. Mutation of this residue (W85S) substantially weakens interactions between full-length eEF-2K and CaM in vitro and reduces eEF-2 phosphorylation in cells.


Asunto(s)
Calcio/química , Calmodulina/química , Quinasa del Factor 2 de Elongación/química , Factores de Elongación de Péptidos/química , Péptidos/química , Secuencia de Aminoácidos , Sitios de Unión , Calcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Línea Celular Tumoral , Cristalografía por Rayos X , Quinasa del Factor 2 de Elongación/genética , Quinasa del Factor 2 de Elongación/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Expresión Génica , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/metabolismo , Péptidos/genética , Péptidos/metabolismo , Fosforilación , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Electricidad Estática , Especificidad por Sustrato , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA