Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Lab Invest ; 104(2): 100310, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38135155

RESUMEN

Diagnostic methods for Helicobacter pylori infection include, but are not limited to, urea breath test, serum antibody test, fecal antigen test, and rapid urease test. However, these methods suffer drawbacks such as low accuracy, high false-positive rate, complex operations, invasiveness, etc. Therefore, there is a need to develop simple, rapid, and noninvasive detection methods for H. pylori diagnosis. In this study, we propose a novel technique for accurately detecting H. pylori infection through machine learning analysis of surface-enhanced Raman scattering (SERS) spectra of gastric fluid samples that were noninvasively collected from human stomachs via the string test. One hundred participants were recruited to collect gastric fluid samples noninvasively. Therefore, 12,000 SERS spectra (n = 120 spectra/participant) were generated for building machine learning models evaluated by standard metrics in model performance assessment. According to the results, the Light Gradient Boosting Machine algorithm exhibited the best prediction capacity and time efficiency (accuracy = 99.54% and time = 2.61 seconds). Moreover, the Light Gradient Boosting Machine model was blindly tested on 2,000 SERS spectra collected from 100 participants with unknown H. pylori infection status, achieving a prediction accuracy of 82.15% compared with qPCR results. This novel technique is simple and rapid in diagnosing H. pylori infection, potentially complementing current H. pylori diagnostic methods.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Humanos , Infecciones por Helicobacter/diagnóstico , Espectrometría Raman , Estómago , Ureasa/análisis , Sensibilidad y Especificidad
2.
Crit Rev Microbiol ; : 1-30, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38910506

RESUMEN

Helicobacter pylori is a gram-negative bacterium that colonizes the stomach of approximately half of the worldwide population, with higher prevalence in densely populated areas like Asia, the Caribbean, Latin America, and Africa. H. pylori infections range from asymptomatic cases to potentially fatal diseases, including peptic ulcers, chronic gastritis, and stomach adenocarcinoma. The management of these conditions has become more difficult due to the rising prevalence of drug-resistant H. pylori infections, which ultimately lead to gastric cancer and mucosa-associated lymphoid tissue (MALT) lymphoma. In 1994, the International Agency for Research on Cancer (IARC) categorized H. pylori as a Group I carcinogen, contributing to approximately 780,000 cancer cases annually. Antibiotic resistance against drugs used to treat H. pylori infections ranges between 15% and 50% worldwide, with Asian countries having exceptionally high rates. This review systematically examines the impacts of H. pylori infection, the increasing prevalence of antibiotic resistance, and the urgent need for accurate diagnosis and precision treatment. The present status of precision treatment strategies and prospective approaches for eradicating infections caused by antibiotic-resistant H. pylori will also be evaluated.

3.
Mol Biol Rep ; 51(1): 38, 2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38158480

RESUMEN

BACKGROUND: The host-microbe interactions are complex, dynamic and context-dependent. In this regard, migratory fish species like hilsa shad (Tenualosa ilisha), which migrates from seawater to freshwater for spawning, provides a unique system for investigating the microbiome under an additional change in fish's habitat. This work was undertaken to detect taxonomic variation of microbiome and their function in the migration of hilsa. METHODS AND RESULTS: The study employed 16S rRNA amplicon-based metagenomic analysis to scrutinize bacterial diversity in hilsa gut, skin mucus and water. Thus, a total of 284 operational taxonomic units (OTUs), 9 phyla, 35 orders and 121 genera were identified in all samples. More than 60% of the identified bacteria were Proteobacteria with modest abundance (> 5%) of Firmicutes, Bacteroidetes and Actinobacteria. Leucobacter in gut and Serratia in skin mucus were the core bacterial genera, while Acinetobacter, Pseudomonas and Psychrobacter exhibited differential compositions in gut, skin mucus and water. CONCLUSIONS: Representative fresh-, brackish- and seawater samples of hilsa habitats were primarily composed of Vibrio, Serratia and Psychrobacter, and their diversity in seawater was significantly higher (P < 0.05) than freshwater. Overall, salinity and water microbiota had an influence on the microbial composition of hilsa shad, contributing to host metabolism and adaptation processes. This pioneer exploration of hilsa gut and skin mucus bacteria across habitats will advance our insights into microbiome assembly in migratory fish populations.


Asunto(s)
Peces , Microbiota , Animales , ARN Ribosómico 16S/genética , Peces/genética , Agua Dulce , Bacterias/genética , Microbiota/genética , Agua
4.
Molecules ; 28(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36903396

RESUMEN

Fifty percent of the world's population is infected with Helicobacter pylori, which can trigger many gastrointestinal disorders. H. pylori eradication therapy consists of two to three antimicrobial medicinal products, but they exhibit limited efficacy and may cause adverse side effects. Alternative therapies are urgent. It was assumed that an essential oil mixture, obtained from species from genera Satureja L., Origanum L. and Thymus L. and called the HerbELICO® essential oil mixture, could be useful in H. pylori infection treatment. HerbELICO® was analyzed by GC-MS and assessed in vitro against twenty H. pylori clinical strains isolated from patients of different geographical origins and with different antimicrobial medicinal products resistance profiles, and for its ability to penetrate the artificial mucin barrier. A customer case study included 15 users of HerbELICO®liquid/HerbELICO®solid dietary supplements (capsulated HerbELICO® mixture in liquid/solid form). Carvacrol and thymol were the most dominant compounds (47.44% and 11.62%, respectively), together with p-cymene (13.35%) and γ-terpinene (18.20%). The minimum concentration required to inhibit in vitro H. pylori growth by HerbELICO® was 4-5% (v/v); 10 min exposure to HerbELICO® was enough to kill off the examined H. pylori strains, while HerbELICO® was able to penetrate through mucin. A high eradication rate (up to 90%) and acceptance by consumers was observed.


Asunto(s)
Antiinfecciosos , Helicobacter pylori , Aceites Volátiles , Origanum , Thymus (Planta) , Humanos , Aceites Volátiles/farmacología
5.
BMC Genomics ; 23(1): 166, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35227192

RESUMEN

BACKGROUND: Aeromonas veronii is a Gram-negative rod-shaped motile bacterium that inhabits mainly freshwater environments. A. veronii is a pathogen of aquatic animals, causing diseases in fish. A. veronii is also an emerging human enteric pathogen, causing mainly gastroenteritis with various severities and also often being detected in patients with inflammatory bowel disease. Currently, limited information is available on the genomic information of A. veronii strains that cause human gastrointestinal diseases. Here we sequenced, assembled and analysed 25 genomes (one complete genome and 24 draft genomes) of A. veronii strains isolated from patients with gastrointestinal diseases using combine sequencing technologies from Illumina and Oxford Nanopore. We also conducted comparative analysis of genomes of 168 global A. veronii strains isolated from different sources. RESULTS: We found that most of the A. veronii strains isolated from patients with gastrointestinal diseases were closely related to each other, and the remaining were closely related to strains from other sources. Nearly 300 putative virulence factors were identified. Aerolysin, microbial collagenase and multiple hemolysins were present in all strains isolated from patients with gastrointestinal diseases. Type III Secretory System (T3SS) in A. veronii was in AVI-1 genomic island identified in this study, most likely acquired via horizontal transfer from other Aeromonas species. T3SS was significantly less present in A. veronii strains isolated from patients with gastrointestinal diseases as compared to strains isolated from fish and domestic animals. CONCLUSIONS: This study provides novel information on source of infection and virulence of A. veronii in human gastrointestinal diseases.


Asunto(s)
Aeromonas veronii , Enfermedades Gastrointestinales , Genoma Bacteriano , Infecciones por Bacterias Gramnegativas , Aeromonas veronii/genética , Aeromonas veronii/patogenicidad , Animales , Enfermedades de los Peces/microbiología , Enfermedades Gastrointestinales/genética , Enfermedades Gastrointestinales/microbiología , Infecciones por Bacterias Gramnegativas/genética , Humanos , Virulencia/genética
6.
PLoS Pathog ; 13(6): e1006464, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28644872

RESUMEN

Helicobacter pylori infection causes chronic active gastritis that after many years of infection can develop into peptic ulceration or gastric adenocarcinoma. The bacterium is highly adapted to surviving in the gastric environment and a key adaptation is the virulence factor urease. Although widely postulated, the requirement of urease expression for persistent infection has not been elucidated experimentally as conventional urease knockout mutants are incapable of colonization. To overcome this constraint, conditional H. pylori urease mutants were constructed by adapting the tetracycline inducible expression system that enabled changing the urease phenotype of the bacteria during established infection. Through tight regulation we demonstrate that urease expression is not only required for establishing initial colonization but also for maintaining chronic infection. Furthermore, successful isolation of tet-escape mutants from a late infection time point revealed the strong selective pressure on this gastric pathogen to continuously express urease in order to maintain chronic infection. In addition to mutations in the conditional gene expression system, escape mutants were found to harbor changes in other genes including the alternative RNA polymerase sigma factor, fliA, highlighting the genetic plasticity of H. pylori to adapt to a changing niche. The tet-system described here opens up opportunities to studying genes involved in the chronic stage of H. pylori infection to gain insight into bacterial mechanisms promoting immune escape and life-long infection. Furthermore, this genetic tool also allows for a new avenue of inquiry into understanding the importance of various virulence determinants in a changing biological environment when the bacterium is put under duress.


Asunto(s)
Gastritis/genética , Silenciador del Gen/fisiología , Infecciones por Helicobacter/inmunología , Helicobacter pylori/genética , Ureasa/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Enfermedad Crónica , Mucosa Gástrica/microbiología , Gastritis/microbiología , Expresión Génica/genética , Ratones , Neoplasias Gástricas/genética
7.
Helicobacter ; 24(1): e12544, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30324717

RESUMEN

BACKGROUND: Helicobacter pylori, gastric cancer-causing bacteria, survive in their gastric environment of more than 50% of the world population. The presence of H. pylori in the gastric vicinity promotes the development of various diseases including peptic ulcer and gastric carcinoma. H. pylori produce and secret Vacuolating cytotoxin A (VacA), a major toxin facilitating the bacteria against the host defense system. The toxin causes multiple effects in epithelial cells and immune cells, especially T cells, B cells, and Macrophages. METHODS: This review describes the diverse functionalities of protein toxin VacA. The specific objective of this review is to address the overall structure, mechanism, and functions of VacA in various cell types. The recent advancements are summarized and discussed and thus conclusion is drawn based on the overall reported evidences. RESULTS: The searched articles on H. pylori VacA were evaluated and limited up to 66 articles for this review. The articles were divided into four major categories including articles on vacA gene, VacA toxin, distinct effects of VacA toxin, and their effects on various cells. Based on these studies, the review article was prepared. CONCLUSIONS: This review describes an overview of how VacA is secreted by H. pylori and contributes to colonization and virulence in multiple ways by affecting epithelial cells, T cells, Dendritic cells, B cells, and Macrophages. The reported evidence suggests that the comprehensive outlook need to be developed for understanding distinctive functionalities of VacA.


Asunto(s)
Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Citotoxinas/metabolismo , Helicobacter pylori/química , Helicobacter pylori/patogenicidad , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Citotoxinas/química , Citotoxinas/genética , Células Epiteliales , Helicobacter pylori/crecimiento & desarrollo , Humanos , Linfocitos , Macrófagos , Vacuolas/metabolismo , Virulencia
8.
Infect Immun ; 84(1): 293-306, 2016 01.
Artículo en Inglés | MEDLINE | ID: mdl-26527212

RESUMEN

Helicobacter heilmannii naturally colonizes the stomachs of dogs and cats and has been associated with gastric disorders in humans. Nine feline Helicobacter strains, classified as H. heilmannii based on ureAB and 16S rRNA gene sequences, were divided into a highly virulent and a low-virulence group. The genomes of these strains were sequenced to investigate their phylogenetic relationships, to define their gene content and diversity, and to determine if the differences in pathogenicity were associated with the presence or absence of potential virulence genes. The capacities of these helicobacters to bind to the gastric mucosa were investigated as well. Our analyses revealed that the low-virulence strains do not belong to the species H. heilmannii but to a novel, closely related species for which we propose the name Helicobacter ailurogastricus. Several homologs of H. pylori virulence factors, such as IceA1, HrgA, and jhp0562-like glycosyltransferase, are present in H. heilmannii but absent in H. ailurogastricus. Both species contain a VacA-like autotransporter, for which the passenger domain is remarkably larger in H. ailurogastricus than in H. heilmannii. In addition, H. ailurogastricus shows clear differences in binding to the gastric mucosa compared to H. heilmannii. These findings highlight the low-virulence character of this novel Helicobacter species.


Asunto(s)
Mucosa Gástrica/microbiología , Gastritis/microbiología , Helicobacter heilmannii/genética , Helicobacter heilmannii/patogenicidad , Mucosa Intestinal/microbiología , Animales , Adhesión Bacteriana/genética , Proteínas Bacterianas/genética , Gatos , Línea Celular , Desoxirribonucleasas de Localización Especificada Tipo II/genética , Perros , Células Epiteliales/microbiología , Mucosa Gástrica/citología , Gerbillinae , Glicosiltransferasas/genética , Infecciones por Helicobacter/microbiología , Helicobacter heilmannii/clasificación , Humanos , Mucosa Intestinal/citología , Datos de Secuencia Molecular , Filogenia , Estructura Terciaria de Proteína , ARN Ribosómico 16S/genética , Virulencia/genética , Zoonosis/microbiología
9.
Microb Genom ; 10(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38814176

RESUMEN

Aeromonas caviae is an emerging human enteric pathogen. However, the genomic features and virulence genes of A. caviae strains from human gastroenteritis and other sources have not been fully elucidated. Here, we conducted a genomic analysis of 565 global A. caviae strains isolated from different sources, including 261 strains isolated from faecal samples of gastroenteritis patients, of which 18 genomes were sequenced in this study. The presence of bacterial virulence genes and secretion systems in A. caviae strains from different sources was compared, and the phylogenetic relationship of A. caviae strains was assessed based on the core genome. The complete genome of A. caviae strain A20-9 isolated from a gastroenteritis patient was obtained in this study, from which 300 putative virulence factors and a T4SS-encoding plasmid, pAC, were identified. Genes encoding T4SS were also identified in a novel genomic island, ACI-1, from other T4SS-positive strains. The prevalence of T4SS was significantly lower in A. caviae strains from gastroenteritis patients than in environmental strains (3 %, P<0.0001 vs 14 %, P<0.01). Conversely, the prevalence of T6SS was significantly higher in A. caviae strains isolated from gastroenteritis patients than in environmental strains (25 %, P<0.05 vs 13  %, P<0.01). Four phylogenetic clusters were formed based on the core genome of 565 A. caviae strains, and strains carrying T6SS often showed close phylogenetic relationships. T3SS, aerolysin and thermostable cytotonic enterotoxin were absent in all 565 A. caviae strains. Our findings provide novel information on the genomic features of A. caviae and suggest that T6SS may play a role in A. caviae-induced human gastroenteritis.


Asunto(s)
Aeromonas caviae , Gastroenteritis , Genoma Bacteriano , Filogenia , Factores de Virulencia , Gastroenteritis/microbiología , Humanos , Aeromonas caviae/genética , Aeromonas caviae/clasificación , Factores de Virulencia/genética , Sistemas de Secreción Tipo VI/genética , Heces/microbiología , Infecciones por Bacterias Gramnegativas/microbiología , Islas Genómicas , Plásmidos/genética
10.
Sci Rep ; 13(1): 1551, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36707682

RESUMEN

Enterococcus faecalis is associated with streptococcosis like infection in fish. A whole-genome sequence study was conducted to investigate the virulence factor and antibiotic-resistance genes in three fish pathogenic E. faecalis. Genomic DNA was extracted from three strains of E. faecalis isolated from streptococcosis infected Nile tilapia (strains BF1B1 and BFFF11) and Thai sarpunti (strain BFPS6). The whole genome sequences of these three strains were performed using a MiSeq sequencer (Illumina, Inc.). All three strains conserved 69 virulence factor such as genes associated with protection against oxidative stress, bacterial cell wall synthesis, gelatinase toxin, multiple biofilm-associated genes and capsule producing genes. Moreover, 39 antibiotic-resistance genes against sixteen major groups of antibiotics were identified in the genome sequences of all three strains. The most commonly used antibiotic Tetracycline resistance genes were found only in BFPS6 strain, whereas, Bacteriocin synthesis genes were identified in both BFFF11 and BFPS6 strain. Phylogenetic analysis revealed that strains BF1B1 and BFFF1 form a different cluster than BFPS6. This is one of the first whole-genome sequence study of fish pathogenic E. faecalis, unfold new information on the virulence factor and Antibiotic resistance genes linked to pathogenicity in fish.


Asunto(s)
Enterococcus faecalis , Infecciones por Bacterias Grampositivas , Animales , Virulencia/genética , Antibacterianos/farmacología , Filogenia , Infecciones por Bacterias Grampositivas/veterinaria , Infecciones por Bacterias Grampositivas/microbiología , Factores de Virulencia/genética , Factores de Virulencia/análisis , Resistencia a la Tetraciclina , Farmacorresistencia Bacteriana/genética , Pruebas de Sensibilidad Microbiana
11.
Front Microbiol ; 14: 1289549, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38274743

RESUMEN

Campylobacter concisus is an oral bacterium. Recent studies suggest that C. concisus may be involved in human gastric diseases. The mechanisms, however, by which C. concisus causes human gastric diseases have not been investigated. Here we examined the gastric epithelial pathogenicity of C. concisus using a cell culture model. Six C. concisus strains and the human gastric epithelial cell line AGS cells were used. IL-8 produced by AGS cells after incubation with C. concisus was measured using enzyme-linked immunosorbent assay (ELISA), and AGS cell apoptosis was determined by caspase 3/7 activities. The effects of C. concisus on actin arrangement in AGS cells was determined using fluorescence staining. The effects of C. concisus on global gene expression in AGS cells was determined by transcriptomic analysis and quantitative real-time PCR (qRT-PCR). The role of the upregulated CYP1A1 gene in gastric cancer survival was assessed using the Kaplan-Meier method. C. concisus induced production of IL-8 by AGS cells with strain variation. Significantly increased caspase 3/7 activities were observed in AGS cells incubated with C. concisus strains when compared to AGS cells without bacteria. C. concisus induced actin re-arrangement in AGS cells. C. concisus upregulated 30 genes in AGS cells and the upregulation of CYP1A1 gene was confirmed by qRT-PCR. The Kaplan-Meier analysis showed that upregulation of CYP1A1 gene is associated with worse survival in gastric cancer patients. Our findings suggest that C. concisus may play a role in gastric inflammation and the progression of gastric cancer. Further investigation in clinical studies is warranted.

12.
Microbiol Spectr ; : e0108823, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37732778

RESUMEN

Aeromonas species are emerging human enteric pathogens. This study examines the isolation of Aeromonas and other enteric bacterial pathogens from patients with and without inflammatory bowel disease (IBD). This study also investigates the intestinal epithelial pathogenic mechanisms of Aeromonas veronii. The isolation rates of seven enteric bacterial pathogens from 2,279 patients with IBD and 373,276 non-IBD patients were compared. An A. veronii strain (AS1) isolated from intestinal biopsies of a patient with IBD was used for pathogenic mechanism investigation, and Escherichia coli K12 was used as a bacterial control. HT-29 cells were used as a model of human intestinal epithelium. A significantly higher isolation of Aeromonas species was found in patients with IBD as compared to non-IBD patients (P = 0.0001, odds ratio = 2.11). A. veronii upregulated 177 inflammatory genes and downregulated 52 protein-coding genes affecting chromatin assembly, multiple small nuclear RNAs, multiple nucleolar RNAs, and 55 cytoplasmic tRNAs in HT-29 cells. These downregulation effects were unique to A. veronii and not observed in HT-29 cells infected with E. coli K12. A. veronii induced intestinal epithelial apoptosis involving the intrinsic pathway. A. veronii caused epithelial microvilli shortening and damage and epithelial production of IL-8. In conclusion, this study for the first time reports the association between IBD and Aeromonas enteric infection detected by bacterial cultivation. This study also reports that A. veronii damages intestinal epithelial cells via multiple mechanisms, of which the downregulating cytoplasmic tRNA, small nuclear RNA, and small nucleolar RNA are novel bacterial pathogenic mechanisms. IMPORTANCE This study for the first time reports the association between inflammatory bowel disease (IBD) and Aeromonas enteric infection detected by bacterial pathogen cultivation, highlighting the need of clinical and public health attention. The finding that patients with IBD are more susceptible to Aeromonas enteric infection suggests that detection of Aeromonas enteric infection should be routinely performed for the diagnosis and treatment of IBD. This study also reports novel bacterial pathogenic mechanisms employed by Aeromonas veronii. Through comparative transcriptomic analysis and other techniques, this study revealed the pathogenic mechanisms by which A. veronii causes damage to intestinal epithelial cells. Among the various pathogenic mechanisms identified, the downregulating tRNA, small nuclear and nucleolar RNAs in human intestinal epithelial cells are novel bacterial pathogenic mechanisms.

13.
J Vis Exp ; (197)2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37578257

RESUMEN

Helicobacter pylori is a major human pathogen that infects approximately half of the global population and is becoming a serious health threat due to its increasing antibiotic resistance. It is the causative agent of chronic active gastritis, peptic ulcer disease, and gastric cancer and has been classified as a Group I Carcinogen by the International Agency for Research on Cancer. Therefore, the rapid and accurate diagnosis of H. pylori and the determination of its antibiotic resistance are important for the efficient eradication of this bacterial pathogen. Currently, H. pylori diagnosis methods mainly include the urea breath test (UBT), the antigen test, the serum antibody test, gastroscopy, the rapid urease test (RUT), and bacterial culture. Among them, the first three detection methods are noninvasive, meaning they are easy tests to conduct. However, bacteria cannot be retrieved through these techniques; thus, drug resistance testing cannot be performed. The last three are invasive examinations, but they are costly, require high skills, and have the potential to cause damage to patients. Therefore, a noninvasive, rapid, and simultaneous method for H. pylori detection and drug resistance testing is very important for efficiently eradicating H. pylori in clinical practice. This protocol aims to present a specific procedure involving the string test in combination with quantitative polymerase chain reaction (qPCR) for the rapid detection of H. pylori infection and antibiotic resistance. Unlike bacterial cultures, this method allows for easy, rapid, noninvasive diagnosis of H. pylori infection status and drug resistance. Specifically, we used qPCR to detect rea for H. pylori infection and mutations in the 23S rRNA and gyrA genes, which encode resistance against clarithromycin and levofloxacin, respectively. Compared to routinely used culturing techniques, this protocol provides a noninvasive, low-cost, and time-saving technique to detect H. pylori infection and determine its antibiotic resistance using qPCR.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Humanos , Infecciones por Helicobacter/diagnóstico , Infecciones por Helicobacter/microbiología , Helicobacter pylori/genética , Claritromicina/farmacología , Farmacorresistencia Microbiana , Reacción en Cadena de la Polimerasa , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética
14.
Cell Host Microbe ; 31(8): 1345-1358.e6, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37490912

RESUMEN

Single-nucleotide polymorphisms (SNPs) in various human genes are key factors in carcinogenesis. However, whether SNPs in bacterial pathogens are similarly crucial in cancer development is unknown. Here, we analyzed 1,043 genomes of the stomach pathogen Helicobacter pylori and pinpointed a SNP in the serine protease HtrA (position serine/leucine 171) that significantly correlates with gastric cancer. Our functional studies reveal that the 171S-to-171L mutation triggers HtrA trimer formation and enhances proteolytic activity and cleavage of epithelial junction proteins occludin and tumor-suppressor E-cadherin. 171L-type HtrA, but not 171S-HtrA-possessing H. pylori, inflicts severe epithelial damage, enhances injection of oncoprotein CagA into epithelial cells, increases NF-κB-mediated inflammation and cell proliferation through nuclear accumulation of ß-catenin, and promotes host DNA double-strand breaks, collectively triggering malignant changes. These findings highlight the 171S/L HtrA mutation as a unique bacterial cancer-associated SNP and as a potential biomarker for risk predictions in H. pylori infections.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Polimorfismo de Nucleótido Simple , Neoplasias Gástricas/genética , Neoplasias Gástricas/microbiología , Serina Proteasas/genética , Serina Proteasas/metabolismo , Infecciones por Helicobacter/complicaciones , Infecciones por Helicobacter/genética , Infecciones por Helicobacter/metabolismo , Antígenos Bacterianos/metabolismo
15.
J Oral Microbiol ; 13(1): 1978732, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34552702

RESUMEN

Introduction: Campylobacter concisus is an oral bacterium that is associated with inflammatory bowel disease (IBD) and Barrett's esophagus (BE). Programmed cell death ligand-1 (PD-L1) is an immune checkpoint protein that is used by tumor cells for immune evasion and has increased expression in patients with IBD and BE. We examined whether C. concisus upregulates PD-L1 expression in intestinal and esophageal epithelial cells. Methods: Human intestinal epithelial HT-29 cells and esophageal epithelial FLO-1 cells with and without interferon (IFN)-γ sensitization were incubated with C. concisus strains. The level of PD-L1 mRNA was quantified using quantitative real-time PCR. Cytokines were measured using Enzyme-Linked Immunosorbent Assay (ELISA). Apoptosis of HT-29 and FLO-1 cells were measured using caspase 3/7 assay. Results: We found that intestinal epithelial cells with IFN-γ sensitization incubated with C. concisus significantly upregulated PD-L1 expression and significantly increased the production of interleukin (IL)-8. Whereas, PD-L1 expression was significantly inhibited in IFN-γ sensitized FLO-1 cells incubated with C. concisus strains. Furthermore, FLO-1 cells with and without IFN-γ sensitization incubated with C. concisus strains both had significantly higher levels of cell death. Conclusion: C. concisushas the potential to cause damage to both intestinal and esophageal epithelial cells, however, with different pathogenic effects.

16.
Microb Genom ; 7(6)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-31682222

RESUMEN

Salmonella enterica serovar Typhimurium is the leading cause of salmonellosis in Australia, and the ability to identify outbreaks and their sources is vital to public health. Here, we examined the utility of whole-genome sequencing (WGS), including complete genome sequencing with Oxford Nanopore technologies, in examining 105 isolates from an endemic multi-locus variable number tandem repeat analysis (MLVA) type over 5 years. The MLVA type was very homogeneous, with 90 % of the isolates falling into groups with a five SNP cut-off. We developed a new two-step approach for outbreak detection using WGS. The first clustering at a zero single nucleotide polymorphism (SNP) cut-off was used to detect outbreak clusters that each occurred within a 4 week window and then a second clustering with dynamically increased SNP cut-offs were used to generate outbreak investigation clusters capable of identifying all outbreak cases. This approach offered optimal specificity and sensitivity for outbreak detection and investigation, in particular of those caused by endemic MLVA types or clones with low genetic diversity. We further showed that inclusion of complete genome sequences detected no additional mutational events for genomic outbreak surveillance. Phylogenetic analysis found that the MLVA type was likely to have been derived recently from a single source that persisted over 5 years, and seeded numerous sporadic infections and outbreaks. Our findings suggest that SNP cut-offs for outbreak cluster detection and public-health surveillance should be based on the local diversity of the relevant strains over time. These findings have general applicability to outbreak detection of bacterial pathogens.


Asunto(s)
Brotes de Enfermedades , Enfermedades Endémicas , Genómica , Epidemiología Molecular , Infecciones por Salmonella/epidemiología , Infecciones por Salmonella/microbiología , Salmonella typhimurium/clasificación , Salmonella typhimurium/genética , Australia/epidemiología , ADN Bacteriano/genética , Humanos , Repeticiones de Minisatélite , Tipificación Molecular , Filogenia , Polimorfismo de Nucleótido Simple , Salud Pública , Intoxicación Alimentaria por Salmonella/epidemiología , Serogrupo , Secuenciación Completa del Genoma
17.
Sci Rep ; 11(1): 22667, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34811394

RESUMEN

Yogurt is one of the most frequently consumed dairy products for nutritional benefits. Although yogurt is enriched with probiotics, it is susceptible to spoilage because of the presence of pathogenic microbes. Spoiled yogurt if consumed can cause food-borne diseases. This study aimed to assess the nutritional composition and microbiome diversity in yogurt manufactured in Bangladesh. Microbial diversity was analyzed through high-throughput sequencing of bacterial 16S rRNA gene and fungal internal transcribed spacer (ITS) region. From nutritional analysis, significantly (P < 0.05) higher pH, fat, moisture, total solid and solid-non-fat contents (%) were observed in sweet yogurt. Following the classification of Illumina sequences, 84.86% and 72.14% of reads were assigned to bacterial and fungal genera, respectively, with significantly higher taxonomic richness in sour yogurt prepared from buffalo. A significant difference in bacterial (Ppermanova = 0.001) and fungal (Ppermanova = 0.013) diversity between sweet and sour yogurt was recorded. A total of 76 bacterial and 70 fungal genera were detected across these samples which were mostly represented by Firmicutes (92.89%) and Ascomycota (98%) phyla, respectively. This is the first study that accentuates nutritional profiles and microbiome diversity of Bangladeshi yogurt which are crucial in determining both active and passive health effects of yogurt consumption in individuals.


Asunto(s)
Microbiología de Alimentos , Microbiota , Ciencias de la Nutrición , Yogur/microbiología , Aeromonas , Animales , Ascomicetos , Bangladesh , Basidiomycota , Biotecnología/métodos , Enterobacter , Firmicutes , Análisis de los Alimentos , Tecnología de Alimentos , Concentración de Iones de Hidrógeno , Kluyveromyces , Lactobacillus , Lactococcus , Leche , Análisis Multivariante , Reacción en Cadena de la Polimerasa , Análisis de Componente Principal , ARN Ribosómico 16S/metabolismo , Streptococcus , Trichosporon
18.
Microbiol Resour Announc ; 9(7)2020 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-32054709

RESUMEN

A fish-pathogenic bacterium, Enterococcus faecalis strain BFFF11, was isolated from a tilapia suffering from streptococcosis in a fish farm in the Gazipur district of Bangladesh. The whole genome of this strain, BFFF11, was 3,067,042 bp, with a GC content of 37.4%.

19.
Iran J Microbiol ; 12(1): 1-10, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32322373

RESUMEN

BACKGROUND AND OBJECTIVES: The re-emergence of pertussis still is being reported all over the world. Pathogen adaptation and antigenic divergence of circulating isolates from vaccine strains are the main reasons of infection resurgence. Waning immunity is also an important factor contributing to resurgence of pertussis. MATERIALS AND METHODS: The genetic diversity and evolutionary characteristics of circulating Iranian isolates of Bordetella pertussis during February 2015 to October 2018 was investigated by pulsed-field gel electrophoresis (PFGE) and subsequently ptxA, ptxP and fim3 alleles were characterized. The next generation genome sequencing was then used to compare the genomics of ptxP1 and ptxP3 of selected isolates from PFGE dendrogram. RESULTS: PFGE differentiated 62 clinical isolates and vaccine and reference strains into 19 PFGE profiles, indicating the higher level of heterogeneity in the population during 2015-2018. The predominant B. pertussis genotype harbored pertussis toxin promoter allele, ptxP3 and the expansion of ptxA1 isolates, were also observed in our population. CONCLUSION: No changes in allelic profile of predominant clone in recent years was observed but antigenic divergence between recently circulating isolates and the vaccine strain has been progressed and significantly was higher than previous studies. The comparative genomic analysis of the ptxP3 and ptxP1 isolates indicate that changes in ptxP3 genome structure including 32 unique SNPs and three unique indels may have contributed to the expansion of the ptxP3 clone. We compared ptxP3 and ptxP1 isolates in pathogenicity-associated genes and found five of them were specific for the ptxP3 isolates. The polymorphisms in pathogenicity-associated genes suggest structural adaptations for these virulence factors.

20.
Microbiol Resour Announc ; 9(39)2020 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-32972930

RESUMEN

This study reports the draft genome sequence of a promising fish probiotic, Bacillus subtilis strain WS1A, that possesses antimicrobial activity against Aeromonas veronii and suppressed motile Aeromonas septicemia in Labeo rohita The de novo assembly resulted in an estimated chromosome size of 4,148,460 bp, with 4,288 open reading frames.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA