Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Int J Mol Sci ; 23(24)2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36555308

RESUMEN

The receptor tyrosine kinase Ret plays a critical role in regulating enteric nervous system (ENS) development. Ret is important for proliferation, migration, and survival of enteric progenitor cells (EPCs). Ret also promotes neuronal fate, but its role during neuronal differentiation and in the adult ENS is less well understood. Inactivating RET mutations are associated with ENS diseases, e.g., Hirschsprung Disease, in which distal bowel lacks ENS cells. Zebrafish is an established model system for studying ENS development and modeling human ENS diseases. One advantage of the zebrafish model system is that their embryos are transparent, allowing visualization of developmental phenotypes in live animals. However, we lack tools to monitor Ret expression in live zebrafish. Here, we developed a new BAC transgenic line that expresses GFP under the ret promoter. We find that EPCs and the majority of ENS neurons express ret:GFP during ENS development. In the adult ENS, GFP+ neurons are equally present in females and males. In homozygous mutants of ret and sox10-another important ENS developmental regulator gene-GFP+ ENS cells are absent. In summary, we characterize a ret:GFP transgenic line as a new tool to visualize and study the Ret signaling pathway from early development through adulthood.


Asunto(s)
Sistema Nervioso Entérico , Pez Cebra , Animales , Masculino , Femenino , Humanos , Adulto , Pez Cebra/genética , Pez Cebra/metabolismo , Sistema Nervioso Entérico/metabolismo , Transducción de Señal , Animales Modificados Genéticamente , Proteínas Proto-Oncogénicas c-ret/genética , Proteínas Proto-Oncogénicas c-ret/metabolismo
2.
Dev Dyn ; 245(11): 1081-1096, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27565577

RESUMEN

BACKGROUND: To understand the basis of nervous system development, we must learn how multipotent progenitors generate diverse neuronal and glial lineages. We addressed this issue in the zebrafish enteric nervous system (ENS), a complex neuronal and glial network that regulates essential intestinal functions. Little is currently known about how ENS progenitor subpopulations generate enteric neuronal and glial diversity. RESULTS: We identified temporally and spatially dependent progenitor subpopulations based on coexpression of three genes essential for normal ENS development: phox2bb, sox10, and ret. Our data suggest that combinatorial expression of these genes delineates three major ENS progenitor subpopulations, (1) phox2bb + /ret- /sox10-, (2) phox2bb + /ret + /sox10-, and (3) phox2bb + /ret + /sox10+, that reflect temporal progression of progenitor maturation during migration. We also found that differentiating zebrafish neurons maintain phox2bb and ret expression, and lose sox10 expression. CONCLUSIONS: Our data show that zebrafish enteric progenitors constitute a heterogeneous population at both early and late stages of ENS development and suggest that marker gene expression is indicative of a progenitor's fate. We propose that a progenitor's expression profile reveals its developmental state: "younger" wave front progenitors express all three genes, whereas more mature progenitors behind the wave front selectively lose sox10 and/or ret expression, which may indicate developmental restriction. Developmental Dynamics 245:1081-1096, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Sistema Nervioso Entérico/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Animales , Sistema Nervioso Entérico/citología , Sistema Nervioso Entérico/embriología , Regulación del Desarrollo de la Expresión Génica , Cresta Neural/citología , Cresta Neural/enzimología , Cresta Neural/metabolismo , ARN Mensajero/genética , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/genética
3.
bioRxiv ; 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38766026

RESUMEN

Optical recording of intricate molecular dynamics is becoming an indispensable technique for biological studies, accelerated by the development of new or improved biosensors and microscopy technology. This creates major computational challenges to extract and quantify biologically meaningful spatiotemporal patterns embedded within complex and rich data sources, many of which cannot be captured with existing methods. Here, we introduce Activity Quantification and Analysis (AQuA2), a fast, accurate, and versatile data analysis platform built upon advanced machine learning techniques. It decomposes complex live imaging-based datasets into elementary signaling events, allowing accurate and unbiased quantification of molecular activities and identification of consensus functional units. We demonstrate applications across a wide range of biosensors, cell types, organs, animal models, and imaging modalities. As exemplar findings, we show how AQuA2 identified drug-dependent interactions between neurons and astroglia, and distinct sensorimotor signal propagation patterns in the mouse spinal cord.

4.
Cell Rep ; 40(13): 111426, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36170823

RESUMEN

The prefrontal cortex (PFC) is a hub for cognitive control, and dopamine profoundly influences its functions. In other brain regions, astrocytes sense diverse neurotransmitters and neuromodulators and, in turn, orchestrate regulation of neuroactive substances. However, basic physiology of PFC astrocytes, including which neuromodulatory signals they respond to and how they contribute to PFC function, is unclear. Here, we characterize divergent signaling signatures in mouse astrocytes of the PFC and primary sensory cortex, which show differential responsiveness to locomotion. We find that PFC astrocytes express receptors for dopamine but are unresponsive through the Gs/Gi-cAMP pathway. Instead, fast calcium signals in PFC astrocytes are time locked to dopamine release and are mediated by α1-adrenergic receptors both ex vivo and in vivo. Further, we describe dopamine-triggered regulation of extracellular ATP at PFC astrocyte territories. Thus, we identify astrocytes as active players in dopaminergic signaling in the PFC, contributing to PFC function though neuromodulator receptor crosstalk.


Asunto(s)
Dopamina , Receptores Adrenérgicos alfa 1 , Adenosina Trifosfato/metabolismo , Animales , Astrocitos/metabolismo , Calcio/metabolismo , Dopamina/metabolismo , Ratones , Corteza Prefrontal/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo
5.
Neuron ; 109(1): 123-134.e4, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33096025

RESUMEN

The excitatory synapse between hippocampal CA3 and CA1 pyramidal neurons exhibits long-term potentiation (LTP), a positive feedback process implicated in learning and memory in which postsynaptic depolarization strengthens synapses, promoting further depolarization. Without mechanisms for interrupting positive feedback, excitatory synapses could strengthen inexorably, corrupting memory storage. Here, we reveal a hidden form of inhibitory synaptic plasticity that prevents accumulation of excitatory LTP. We developed a knockin mouse that allows optical control of endogenous α5-subunit-containing γ-aminobutyric acid (GABA)A receptors (α5-GABARs). Induction of excitatory LTP relocates α5-GABARs, which are ordinarily extrasynaptic, to inhibitory synapses, quashing further NMDA receptor activation necessary for inducing more excitatory LTP. Blockade of α5-GABARs accelerates reversal learning, a behavioral test for cognitive flexibility dependent on repeated LTP. Hence, inhibitory synaptic plasticity occurs in parallel with excitatory synaptic plasticity, with the ensuing interruption of the positive feedback cycle of LTP serving as a possible critical early step in preserving memory.


Asunto(s)
Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Inhibidores/fisiología , Memoria/fisiología , Plasticidad Neuronal/fisiología , Receptores de GABA-A/metabolismo , Sinapsis/metabolismo , Animales , Femenino , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores de GABA-A/genética , Aprendizaje Inverso/fisiología , Sinapsis/genética
6.
J Am Dent Assoc ; 150(12): 1040-1047, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31761017

RESUMEN

BACKGROUND: Complete removal of existing composite restorations without unnecessary removal of tooth structure is challenging. The authors compared the amount of tooth structure removed and composite remaining in Class III preparations when using an erbium laser or a rotary instrument. METHODS: Mesiolingual and distolingual preparations were prepared in 14 extracted anterior teeth, restored with shade-matched composite, finished, and polished. One restoration was removed with an erbium, chromium:yttrium-scandium-gallium-garnet laser and the other with a rotary instrument (handpiece and carbide burs). Gypsum models made from vinyl polysiloxane impressions of the preparation and removal stages were scanned. The 2 scans were precisely aligned to calculate the amount of tooth structure removed and residual composite, which were statistically compared (t test) between the bur and laser groups. RESULTS: Rotary instruments removed significantly more tooth structure than the laser in terms of mean depth (P = .0017) but not maximum depth (P = .0762). Although mean depth of tooth loss was smaller in the laser group, the area of tooth loss was significantly larger (P = .0004) because the rotary instrumentation left significantly more composite than the laser in terms of volume (P = .0104), mean depth (P = .0375), maximum depth (P = .0318), and area (P = .0056). CONCLUSIONS AND PRACTICAL IMPLICATIONS: The erbium, chromium:yttrium-scandium-gallium-garnet laser was more selective in removing existing composite restorations than a rotary instrument because it removed less tooth structure and left behind less composite. Unintentional loss of tooth structure and unnoticeable residual composite are inevitable when removing existing composites. Erbium lasers are alternative means of composite removal that may be more selective than a rotary instrument.


Asunto(s)
Erbio , Galio , Cromo , Escandio , Itrio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA