Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Pediatr Blood Cancer ; 67(10): e28629, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32776500

RESUMEN

This report by the Radiation Oncology Discipline of Children's Oncology Group (COG) describes the practice patterns of pediatric image-guided radiotherapy (IGRT) based on a member survey and provides practice recommendations accordingly. The survey comprised of 11 vignettes asking clinicians about their recommended treatment modalities, IGRT preferences, and frequency of in-room verification. Technical questions asked physicists about imaging protocols, dose reduction, setup correction, and adaptive therapy. In this report, the COG Radiation Oncology Discipline provides an IGRT modality/frequency decision tree and the expert guidelines for the practice of ionizing image guidance in pediatric radiotherapy patients.


Asunto(s)
Neoplasias/radioterapia , Guías de Práctica Clínica como Asunto/normas , Pautas de la Práctica en Medicina/normas , Oncología por Radiación/normas , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Guiada por Imagen/métodos , Niño , Humanos , Neoplasias/patología , Dosificación Radioterapéutica
2.
Int J Part Ther ; 11: 100020, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38757080

RESUMEN

Purpose: To report the current practice pattern of the proton stereotactic body radiation therapy (SBRT) for prostate treatments. Materials and Methods: A survey was designed to inquire about the practice of proton SBRT treatment for prostate cancer. The survey was distributed to all 30 proton therapy centers in the United States that participate in the National Clinical Trial Network in February, 2023. The survey focused on usage, patient selection criteria, prescriptions, target contours, dose constraints, treatment plan optimization and evaluation methods, patient-specific QA, and image-guided radiation therapy (IGRT) methods. Results: We received responses from 25 centers (83% participation). Only 8 respondent proton centers (32%) reported performing SBRT of the prostate. The remaining 17 centers cited 3 primary reasons for not offering this treatment: no clinical need, lack of volumetric imaging, and/or lack of clinical evidence. Only 1 center cited the reduction in overall reimbursement as a concern for not offering prostate SBRT. Several common practices among the 8 centers offering SBRT for the prostate were noted, such as using Hydrogel spacers, fiducial markers, and magnetic resonance imaging (MRI) for target delineation. Most proton centers (87.5%) utilized pencil beam scanning (PBS) delivery and completed Imaging and Radiation Oncology Core (IROC) phantom credentialing. Treatment planning typically used parallel opposed lateral beams, and consistent parameters for setup and range uncertainties were used for plan optimization and robustness evaluation. Measurements-based patient-specific QA, beam delivery every other day, fiducial contours for IGRT, and total doses of 35 to 40 GyRBE were consistent across all centers. However, there was no consensus on the risk levels for patient selection. Conclusion: Prostate SBRT is used in about 1/3 of proton centers in the US. There was a significant consistency in practices among proton centers treating with proton SBRT. It is possible that the adoption of proton SBRT may become more common if proton SBRT is more commonly offered in clinical trials.

3.
ArXiv ; 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38351927

RESUMEN

Stereotactic body radiation therapy (SBRT) and hypofractionation using pencil-beam scanning (PBS) proton therapy (PBSPT) is an attractive option for thoracic malignancies. Combining the advantages of target coverage conformity and critical organ sparing from both PBSPT and SBRT, this new delivery technique has great potential to improve the therapeutic ratio, particularly for tumors near critical organs. Safe and effective implementation of PBSPT SBRT/hypofractionation to treat thoracic malignancies is more challenging than the conventionally-fractionated PBSPT due to concerns of amplified uncertainties at the larger dose per fraction. NRG Oncology and Particle Therapy Cooperative Group (PTCOG) Thoracic Subcommittee surveyed US proton centers to identify practice patterns of thoracic PBSPT SBRT/hypofractionation. From these patterns, we present recommendations for future technical development of proton SBRT/hypofractionation for thoracic treatment. Amongst other points, the recommendations highlight the need for volumetric image guidance and multiple CT-based robust optimization and robustness tools to minimize further the impact of uncertainties associated with respiratory motion. Advances in direct motion analysis techniques are urgently needed to supplement current motion management techniques.

4.
Int J Radiat Oncol Biol Phys ; 119(4): 1208-1221, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38395086

RESUMEN

Stereotactic body radiation therapy (SBRT) and hypofractionation using pencil-beam scanning (PBS) proton therapy (PBSPT) is an attractive option for thoracic malignancies. Combining the advantages of target coverage conformity and critical organ sparing from both PBSPT and SBRT, this new delivery technique has great potential to improve the therapeutic ratio, particularly for tumors near critical organs. Safe and effective implementation of PBSPT SBRT/hypofractionation to treat thoracic malignancies is more challenging than the conventionally fractionated PBSPT because of concerns of amplified uncertainties at the larger dose per fraction. The NRG Oncology and Particle Therapy Cooperative Group Thoracic Subcommittee surveyed proton centers in the United States to identify practice patterns of thoracic PBSPT SBRT/hypofractionation. From these patterns, we present recommendations for future technical development of proton SBRT/hypofractionation for thoracic treatment. Among other points, the recommendations highlight the need for volumetric image guidance and multiple computed tomography-based robust optimization and robustness tools to minimize further the effect of uncertainties associated with respiratory motion. Advances in direct motion analysis techniques are urgently needed to supplement current motion management techniques.


Asunto(s)
Consenso , Terapia de Protones , Hipofraccionamiento de la Dosis de Radiación , Radiocirugia , Neoplasias Torácicas , Terapia de Protones/métodos , Humanos , Radiocirugia/métodos , Neoplasias Torácicas/radioterapia , Órganos en Riesgo/efectos de la radiación , Oncología por Radiación/normas , Pautas de la Práctica en Medicina , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Guiada por Imagen/métodos , Estados Unidos , Tomografía Computarizada por Rayos X , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/diagnóstico por imagen
5.
ArXiv ; 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38463503

RESUMEN

A survey was designed to inquire about the practice of proton SBRT treatment for prostate cancer. The survey was distributed to all 30 proton therapy centers in the United States that participate in the National Clinical Trial Network in Feb. 2023. The survey focused on usage, patient selection criteria, prescriptions, target contours, dose constraints, treatment plan optimization and evaluation methods, patient-specific QA, and IGRT methods. Results: We received responses from 25 centers (83% participation). Only 8 respondent proton centers (32%) reported performing SBRT of the prostate. The remaining 17 centers cited three primary reasons for not offering this treatment: no clinical need, lack of volumetric imaging, and/or lack of clinical evidence. Only 1 center cited the reduction in overall reimbursement as a concern for not offering prostate SBRT. Several common practices among the 8 centers offering SBRT for the prostate were noted, such as using Hydrogel spacers, fiducial markers, and MRI for target delineation. Most proton centers (87.5%) utilized pencil beam scanning (PBS) delivery and completed Imaging and Radiation Oncology Core (IROC) phantom credentialing. Treatment planning typically used parallel opposed lateral beams, and consistent parameters for setup and range uncertainties were used for plan optimization and robustness evaluation. Measurements-based patient-specific QA, beam delivery every other day, fiducial contours for IGRT, and total doses of 35-40 GyRBE were consistent across all centers. However, there was no consensus on the risk levels for patient selection. Conclusion: Prostate SBRT is used in about 1/3 of proton centers in the US. There was a significant consistency in practices among proton centers treating with proton SBRT. It is possible that the adoption of proton SBRT may become more common if proton SBRT is more commonly offered in clinical trials.

6.
Phys Med Biol ; 69(11)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38663410

RESUMEN

Objective. This study characterized optically-stimulated luminescent dosimeter (OSLD) nanoDots for use in a therapeutic carbon beam using the Imaging and Radiation Oncology Core (IROC) framework for remote output verification.Approach. The absorbed dose correction factors for OSLD (fading, linearity, beam quality, angularity, and depletion), as defined by AAPM TG 191, were characterized for carbon beams. For the various correction factors, the effect of linear energy transfer (LET) was examined by characterizing in both a low and high LET setting.Main results. Fading was not statistically different between reference photons and carbon, nor between low and high LET beams; thus, the standard IROC-defined exponential function could be used to characterize fading. Dose linearity was characterized with a linear fit; while low and high LET carbon linearity was different, these differences were small and could be rolled into the uncertainty budget if using a single linearity correction. A linear fit between beam quality and dose-averaged LET was determined. The OSLD response at various angles of incidence was not statistically different, thus a correction factor need not be applied. There was a difference in depletion between low and high LET irradiations in a primary carbon beam, but this difference was small over the standard five readings. The largest uncertainty associated with the use of OSLDs in carbon was because of thekQcorrection factor, with an uncertainty of 6.0%. The overall uncertainty budget was 6.3% for standard irradiation conditions.Significance. OSLD nanoDot response was characterized in a therapeutic carbon beam. The uncertainty was larger than for traditional photon applications. These findings enable the use of OSLDs for carbon absorbed dose measurements, but with less accuracy than conventional OSLD audit programs.


Asunto(s)
Carbono , Carbono/química , Carbono/uso terapéutico , Radiometría/métodos , Transferencia Lineal de Energía , Incertidumbre , Dosimetría con Luminiscencia Ópticamente Estimulada/métodos , Dosificación Radioterapéutica , Humanos
7.
Med Phys ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598230

RESUMEN

PURPOSE: As carbon ion radiotherapy increases in use, there are limited phantom materials for heterogeneous or anthropomorphic phantom measurements. This work characterized the radiological clinical equivalence of several phantom materials in a therapeutic carbon ion beam. METHODS: Eight materials were tested for radiological material-equivalence in a carbon ion beam. The materials were computed tomography (CT)-scanned to obtain Hounsfield unit (HU) values, then irradiated in a monoenergetic carbon ion beam to determine relative linear stopping power (RLSP). The corresponding HU and RLSP for each phantom material were compared to clinical carbon ion calibration curves. For absorbed dose comparison, ion chamber measurements were made in the center of a carbon ion spread-out Bragg peak (SOBP) in water and in the phantom material, evaluating whether the material perturbed the absorbed dose measurement beyond what was predicted by the HU-RLSP relationship. RESULTS: Polyethylene, solid water (Gammex and Sun Nuclear), Blue Water (Standard Imaging), and Techtron HPV had measured RLSP values that agreed within ±4.2% of RLSP values predicted by the clinical calibration curve. Measured RLSP for acrylic was 7.2% different from predicted. The agreement for balsa wood and cork varied between samples. Ion chamber measurements in the phantom materials were within 0.1% of ion chamber measurements in water for most materials (solid water, Blue Water, polyethylene, and acrylic), and within 1.9% for the rest of the materials (balsa wood, cork, and Techtron HPV). CONCLUSIONS: Several phantom materials (Blue Water, polyethylene, solid water [Gammex and Sun Nuclear], and Techtron HPV) are suitable for heterogeneous phantom measurements for carbon ion therapy. Low density materials should be carefully characterized due to inconsistencies between samples.

8.
J Radiosurg SBRT ; 9(1): 75-82, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38029015

RESUMEN

Our randomized clinical study comparing stereotactic body radiotherapy (SBRT) and stereotactic body proton therapy (SBPT) for early stage non-small cell lung cancer (NSCLC) was closed prematurely owing to poor enrollment, largely because of lack of volumetric imaging and difficulty in obtaining insurance coverage for the SBPT group. In this article, we describe technology improvements in our new proton therapy center, particularly in image guidance with cone beam CT (CBCT) and CT on rail (CTOR), as well as motion management with real-time gated proton therapy (RGPT) and optical surface imaging. In addition, we have a treatment planning system that provides better treatment plan optimization and more accurate dose calculation. We expect to re-start the SBPT program, including for early stage NSCLC as well as for other disease sites soon after starting patient treatment at our new proton therapy center.

9.
Radiother Oncol ; 182: 109494, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36708923

RESUMEN

BACKGROUND AND PURPOSE: The Global Clinical Trials RTQA Harmonization Group (GHG) set out to evaluate and prioritize clinical trial quality assurance. METHODS: The GHG compiled a list of radiotherapy quality assurance (QA) tests performed for proton and photon therapy clinical trials. These tests were compared between modalities to assess whether there was a need for different types of assessments per modality. A failure modes and effects analysis (FMEA) was performed to assess the risk of each QA failure. RESULTS: The risk analysis showed that proton and photon therapy shared four out of five of their highest-risk failures (end-to-end anthropomorphic phantom test, phantom tests using respiratory motion, pre-treatment patient plan review of contouring/outlining, and on-treatment/post-treatment patient plan review of dosimetric coverage). While similar trends were observed, proton therapy had higher risk failures, driven by higher severity scores. A sub-analysis of occurrence × severity scores identified high-risk scores to prioritize for improvements in RTQA detectability. A novel severity scaler was introduced to account for the number of patients affected by each failure. This scaler did not substantially alter the ranking of tests, but it elevated the QA program evaluation to the top 20th percentile. This is the first FMEA performed for clinical trial quality assurance. CONCLUSION: The identification of high-risk errors associated with clinical trials is valuable to prioritize and reduce errors in radiotherapy and improve the quality of trial data and outcomes, and can be applied to optimize clinical radiotherapy QA.


Asunto(s)
Análisis de Modo y Efecto de Fallas en la Atención de la Salud , Protones , Humanos , Fotones/uso terapéutico , Radiometría , Medición de Riesgo
10.
Int J Radiat Oncol Biol Phys ; 116(5): 1202-1217, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37121362

RESUMEN

FLASH radiation therapy (FLASH-RT), delivered with ultrahigh dose rate (UHDR), may allow patients to be treated with less normal tissue toxicity for a given tumor dose compared with currently used conventional dose rate. Clinical trials are being carried out and are needed to test whether this improved therapeutic ratio can be achieved clinically. During the clinical trials, quality assurance and credentialing of equipment and participating sites, particularly pertaining to UHDR-specific aspects, will be crucial for the validity of the outcomes of such trials. This report represents an initial framework proposed by the NRG Oncology Center for Innovation in Radiation Oncology FLASH working group on quality assurance of potential UHDR clinical trials and reviews current technology gaps to overcome. An important but separate consideration is the appropriate design of trials to most effectively answer clinical and scientific questions about FLASH. This paper begins with an overview of UHDR RT delivery methods. UHDR beam delivery parameters are then covered, with a focus on electron and proton modalities. The definition and control of safe UHDR beam delivery and current and needed dosimetry technologies are reviewed and discussed. System and site credentialing for large, multi-institution trials are reviewed. Quality assurance is then discussed, and new requirements are presented for treatment system standard analysis, patient positioning, and treatment planning. The tables and figures in this paper are meant to serve as reference points as we move toward FLASH-RT clinical trial performance. Some major questions regarding FLASH-RT are discussed, and next steps in this field are proposed. FLASH-RT has potential but is associated with significant risks and complexities. We need to redefine optimization to focus not only on the dose but also on the dose rate in a manner that is robust and understandable and that can be prescribed, validated, and confirmed in real time. Robust patient safety systems and access to treatment data will be critical as FLASH-RT moves into the clinical trials.


Asunto(s)
Habilitación Profesional , Electrones , Humanos , Instituciones de Salud , Posicionamiento del Paciente , Tecnología , Dosificación Radioterapéutica
11.
Int J Radiat Oncol Biol Phys ; 112(4): 1004-1011, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-34780973

RESUMEN

PURPOSE: This study aimed to highlight the value and key findings of on-site proton audits. METHODS AND MATERIALS: The authors performed 38 on-site measurement-based peer reviews of proton centers participating in National Cancer Institute-funded clinical trials. The reviews covered beam calibration, lateral and depth measurements, mechanical checks, treatment planning and clinical practice, and quality assurance (QA) practices. Program deficiencies were noted, and recommendations were made about ways institutions could improve their practices. RESULTS: Institutions received an average of 3 (range, 1-8) recommendations for practice improvements. The number of deficiencies did not decrease over time, highlighting the continued need for this type of peer review. The most common deficiencies were for Task Group-recommended QA compliance (97% of centers), computed tomography number (CTN) to relative linear stopping power conversion (59%), and QA procedures (53%). In addition, 32% of institutions assessed failed at least 1 lateral beam profile measurement (<90% of pixels passing 3% [global]/3 mm; 10% threshold), despite passing internal QA measurements. These failures occurred for several different plan configurations (large, small, shallow, and deep targets) and at different depths in the beam path (proximal to target, central, and distal). CTN to relative linear stopping power conversion curves showed deviations at low, mid, and high CTNs and highlighted areas of inconsistency between proton centers, with many centers falling outside of 2 sigma of the mean curve of their peers. All deficiencies from the peer review were discussed with the institutions, and many implemented dosimetric treatment planning and practice changes to improve the accuracy of their system and consistency with other institutions. CONCLUSIONS: This peer review program has been integral in confirming and promoting consistency and best practice across proton centers for clinical trials, minimizing deviations for outcomes data.


Asunto(s)
Auditoría Clínica , Terapia de Protones , Garantía de la Calidad de Atención de Salud , Calibración , Humanos , National Cancer Institute (U.S.) , Terapia de Protones/métodos , Terapia de Protones/normas , Radiometría , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Estados Unidos
12.
Med Phys ; 49(6): 4099-4108, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35366339

RESUMEN

While FLASH radiation therapy is inspiring enthusiasm to transform the field, it is neither new nor well understood with respect to the radiobiological mechanisms. As FLASH clinical trials are designed, it will be important to ensure we can deliver dose consistently and safely to every patient. Much like hyperthermia and proton therapy, FLASH is a promising new technology that will be complex to implement in the clinic and similarly will require customized credentialing for multi-institutional clinical trials. There is no doubt that FLASH seems promising, but many technologies that we take for granted in conventional radiation oncology, such as rigorous dosimetry, 3D treatment planning, volumetric image guidance, or motion management, may play a major role in defining how to use, or whether to use, FLASH radiotherapy. Given the extended time frame for patients to experience late effects, we recommend moving deliberately but cautiously forward toward clinical trials. In this paper, we review the state of quality assurance and safety systems in FLASH, identify critical pre-clinical data points that need to be defined, and suggest how lessons learned from previous technological advancements will help us close the gaps and build a successful path to evidence-driven FLASH implementation.


Asunto(s)
Terapia de Protones , Oncología por Radiación , Ensayos Clínicos como Asunto , Habilitación Profesional , Humanos , Radiobiología , Dosificación Radioterapéutica
13.
Int J Radiat Oncol Biol Phys ; 112(3): 600-610, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34762972

RESUMEN

PURPOSE: The current distribution of radiation therapy (RT) facilities in the United States is not well established. A comprehensive inventory of U.S. RT facilities was last assessed in 2005, based on data from state regulatory agencies and dosimetric quality assurance bodies. We updated this database to characterize population-level measures of geographic access to RT and analyze changes over the past 15 years. METHODS AND MATERIALS: We compiled data from regulatory and accrediting organizations to identify U.S. facilities with linear accelerators used to treat humans in 2018 to 2020. Addresses were geocoded and analyzed with Geographic Information Services software. Geographic access was characterized by assessing the Euclidian distance between ZIP code tabulation areas/county centroids and RT facilities. Populations were assigned to each county to estimate the effect of facility changes at the population level. Logistic regressions were performed to identify features associated with increased distance to RT and associated with regions that gained an RT facility between the 2 time points studied. RESULTS: In 2020, a total of 2313 U.S. RT facilities were reported, compared with 1987 in 2005, representing a 16.4% growth in facilities over nearly 15 years. Based on population attribution to the centroids of ZIP Code Tabulation Areas, 77.9% of the U.S. population lives within 12.5 miles of an RT facility, and 1.8% of the U.S. population lives more than 50 miles from an RT facility. We found that increased distance to RT was associated with nonmetro status, less insurance, older median age, and less populated regions. Between 2005 and 2020, the population living within 12.5 miles from an RT facility increased by 2.1 percentage points, whereas the population living furthest from RT facilities decreased 0.6 percentage points. Regions with improved geographic RT access are more likely to be higher income and better insured. CONCLUSIONS: The percentage of the U.S. population with limited geographic access to RT is 1.8%. We found that people benefiting from improved access to RT facilities are more economically advantaged, suggesting disparities in geographic access may not improve without intervention.


Asunto(s)
Accesibilidad a los Servicios de Salud , Renta , Humanos , Estados Unidos
14.
Pract Radiat Oncol ; 11(3): e322-e328, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33271351

RESUMEN

PURPOSE: Our purpose was to analyze and classify the patterns of failure for irradiations of the Imaging and Radiation Oncology Core photon liver phantom. METHODS AND MATERIALS: Imaging and Radiation Oncology Core's anthropomorphic liver phantom simulates multitarget liver disease with respiratory motion. Two hundred forty-nine liver phantom results from 2013 to 2019 were analyzed. Phantom irradiations that failed were categorized by the error attributed to the failure. Phantom results were also compared by demographic data, such as machine type, treatment planning system, motion management technique, number of isocenters, and whether the phantom was a first time or repeat irradiation. RESULTS: The failure rate for the liver phantom was 27%. From the 68 irradiations that did not pass, 5 failure modes were identified. The most common failure mode was localization errors in the direction of motion, with over 50% of failures attributed to this mode. The second-most common failure mode was systematic dose errors. The internal target volume technique performed worse than other motion management techniques. Failure modes were different by the number of isocenters used, with multi-isocenter irradiations having more failure modes in a single phantom irradiation. CONCLUSIONS: Motion management techniques and proper alignment of moving targets play a large role in the successful irradiation of the liver phantom. These errors should be examined to ensure accurate patient treatment for liver disease or other sites where multiple moving targets are present.


Asunto(s)
Oncología por Radiación , Radioterapia de Intensidad Modulada , Humanos , Hígado/diagnóstico por imagen , Fantasmas de Imagen , Planificación de la Radioterapia Asistida por Computador
15.
Int J Part Ther ; 8(2): 73-81, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34722813

RESUMEN

PURPOSE/OBJECTIVES: Monte Carlo (MC) dose calculation has appeared in primary commercial treatment-planning systems and various in-house platforms. Dual-energy computed tomography (DECT) and metal artifact reduction (MAR) techniques complement MC capabilities. However, no publications have yet reported how proton therapy centers implement these new technologies, and a national survey is required to determine the feasibility of including MC and companion techniques in cooperative group clinical trials. MATERIALS/METHODS: A 9-question survey was designed to query key clinical parameters: scope of MC utilization, validation methods for heterogeneities, clinical site-specific imaging guidance, proton range uncertainties, and how implants are handled. A national survey was distributed to all 29 operational US proton therapy centers on 13 May 2019. RESULTS: We received responses from 25 centers (86% participation). Commercial MC was most commonly used for primary plan optimization (16 centers) or primary dose evaluation (18 centers), while in-house MC was used more frequently for secondary dose evaluation (7 centers). Based on the survey, MC was used infrequently for gastrointestinal, genitourinary, gynecology and extremity compared with other more heterogeneous disease sites (P < .007). Although many centers had published DECT research, only 3/25 centers had implemented DECT clinically, either in the treatment-planning system or to override implant materials. Most centers (64%) treated patients with metal implants on a case-by-case basis, with a variety of methods reported. Twenty-four centers (96%) used MAR images and overrode the surrounding tissue artifacts; however, there was no consensus on how to determine metal dimension, materials density, or stopping powers. CONCLUSION: The use of MC for primary dose calculation and optimization was prevalent and, therefore, likely feasible for clinical trials. There was consensus to use MAR and override tissues surrounding metals but no consensus about how to use DECT and MAR for human tissues and implants. Development and standardization of these advanced technologies are strongly encouraged for vendors and clinical physicists.

16.
Pract Radiat Oncol ; 10(5): 372-381, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32413413

RESUMEN

PURPOSE: Our purpose was to investigate and classify the reasons why institutions fail the Imaging and Radiation Oncology Core (IROC) stereotactic body radiation therapy (SBRT) spine and moving lung phantoms, which are used to credential institutions for clinical trial participation. METHODS AND MATERIALS: All IROC moving lung and SBRT spine phantom irradiation failures recorded from January 2012 to December 2018 were evaluated in this study. A failure was a case where the institution did not meet the established IROC criteria for agreement between planned and delivered dose. We analyzed the reports for all failing irradiations, including point dose disagreement, dose profiles, and gamma analyses. Classes of failure patterns were created and used to categorize each instance. RESULTS: There were 158 failing cases analyzed: 116 of 1052 total lung irradiations and 42 of 263 total spine irradiations. Seven categories were required to describe the lung phantom failures, whereas 4 were required for the spine. Types of errors present in both phantom groups included systematic dose and localization errors. Fifty percent of lung failures were due to a superior-inferior localization error, that is, error in the direction of major motion. Systematic dose errors, however, contributed to only 22% of lung failures. In contrast, the majority (60%) of spine phantom failures were due to systematic dose errors, with localization errors (in any direction) accounting for only 14% of failures. CONCLUSIONS: There were 2 distinct patterns of failure between the IROC moving lung and SBRT spine phantoms. The majority of the lung phantom failures were due to localization errors, whereas the spine phantom failures were largely attributed to systematic dose errors. Both of these errors are clinically relevant and could manifest as errors in patient cases. These findings highlight the value of independent end-to-end dosimetry audits and can help guide the community in improving the quality of radiation therapy by focusing attention on where errors manifest in the community.


Asunto(s)
Oncología por Radiación , Radiocirugia , Radioterapia de Intensidad Modulada , Humanos , Pulmón/diagnóstico por imagen , Fantasmas de Imagen , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
17.
Med Dosim ; 44(2): 122-129, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-29759487

RESUMEN

The objective of this study was to examine the use of proton pencil beam scanning for the treatment of moving lung tumors. A single-field uniform dose proton pencil beam scanning (PBS) plan was generated for the standard thorax phantom designed by the Imaging and Radiation Oncology Core (IROC) Houston QA Center. Robust optimization, including range and setup uncertainties as well as volumetric repainting, was used for the plan. Patient-specific quality assurance (QA) measurements were performed using both a water tank and a custom heterogeneous QA phantom. A custom moving phantom was used to find the optimal number of volumetric repainting. Both analytical and Monte Carlo (MC) algorithms were used for dose calculation and their accuracies were compared with actual measurements. A single ionization chamber, a 2-dimensional ionization chamber array, thermoluminescent dosimeters (TLDs), and films were used for dose measurements. The optimal number of volumetric repainting was found to be 4 times in our system. The mean dose overestimations on a moving target by analytical and MC algorithms based on a time-averaged computed tomography (CT) image of the phantom were found to be 4.8% and 2.4%, respectively. The mean gamma indexes for analytical and MC algorithms were 91% and 96%, respectively. The MC dose algorithm calculation was found to have a better agreement with measurements compared with the analytical algorithm. When treating moving lung tumors using proton PBS, the techniques of robust optimization, volumetric repainting, and MC dose calculation were found effective. Extra care needs to be taken when an analytical dose calculation algorithm is used.


Asunto(s)
Neoplasias Pulmonares/radioterapia , Fantasmas de Imagen , Terapia de Protones , Planificación de la Radioterapia Asistida por Computador , Algoritmos , Humanos , Método de Montecarlo , Movimiento , Dosificación Radioterapéutica , Tomografía Computarizada por Rayos X
18.
Pract Radiat Oncol ; 9(4): 200-207, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30562614

RESUMEN

PURPOSE: With external beam radiation therapy, uncertainties in treatment planning and delivery can result in an undesirable dose distribution delivered to the patient that can compromise the benefit of treatment. Techniques including geometric margins and probabilistic optimization have been used effectively to mitigate the effects of uncertainties. However, their broad application is inconsistent and can compromise the conclusions derived from cross-technique and cross-modality comparisons. METHODS AND MATERIALS: Conventional methods to deal with treatment planning and delivery uncertainties are described, and robustness analysis is presented as a framework that is applicable across treatment techniques and modalities. RESULTS: This report identifies elements that are imperative to include when conducting a robustness analysis and describing uncertainties and their dosimetric effects. CONCLUSION: The robustness analysis approach described here is presented to promote reliable plan evaluation and dose reporting, particularly during clinical trials conducted across institutions and treatment modalities.


Asunto(s)
Dosificación Radioterapéutica/normas , Planificación de la Radioterapia Asistida por Computador/métodos , Humanos , Incertidumbre
19.
Radiat Oncol ; 14(1): 108, 2019 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-31208439

RESUMEN

PURPOSE: The purpose of this study is to evaluate the impact of two methods of reporting planned dose distributions on the Gamma analysis pass rates for comparison with measured 2D film dose and simulated delivered 3D dose for proton pencil beam scanning treatment of the Imaging and Radiation Oncology Core (IROC) proton lung and liver mobile phantoms. METHODS AND MATERIALS: Four-dimensional (4D) computed-tomography (CT) image sets were acquired for IROC proton lung and liver mobile phantoms, which include dosimetry inserts that contains targets, thermoluminescent dosimeters and EBT2 films for plan dose verification. 4DCT measured fixed motion magnitudes were 1.3 and 1.0 cm for the lung and liver phantoms, respectively. To study the effects of motion magnitude on the Gamma analysis pass rate, three motion magnitudes for each phantom were simulated by creating virtual 4DCT image sets with motion magnitudes scaled from the scanned phantom motion by 50, 100, and 200%. The internal target volumes were contoured on the maximum intensity projection CTs of the 4DCTs for the lung phantom and on the minimum intensity projection CTs of the 4DCTs for the liver phantom. Treatment plans were optimized on the average intensity projection (AVE) CTs of the 4DCTs using the RayStation treatment planning system. Plan doses were calculated on the AVE CTs, which was defined as the planned AVE dose (method one). Plan doses were also calculated on all 10 phase CTs of the 4DCTs and were registered using target alignment to and equal-weight-summed on the 50% phase (T50) CT, which was defined as the planned 4D dose (method two). The planned AVE doses and 4D doses for phantom treatment were reported to IROC, and the 2D-2D Gamma analysis pass rates for measured film dose relative to the planned AVE and 4D doses were compared. To evaluate motion interplay effects, simulated delivered doses were calculated for each plan by sorting spots into corresponding respiratory phases using spot delivery time recorded in the log files by the beam delivery system to calculate each phase dose and accumulate dose to the T50 CTs. Ten random beam starting phases were used for each beam to obtain the range of the simulated delivered dose distributions. 3D-3D Gamma analyses were performed to compare the planned 4D/AVE doses with simulated delivered doses. RESULTS: The planned 4D dose matched better with the measured 2D film dose and simulated delivered 3D dose than the planned AVE dose. Using planned 4D dose as institution reported planned dose to IROC improved IROC film dose 2D-2D Gamma analysis pass rate from 92 to 96% on average for three films for the lung phantom (7% 5 mm), and from 92 to 94% in the sagittal plane for the liver phantom (7% 4 mm), respectively, compared with using the planned AVE dose. The 3D-3D Gamma analysis (3% 3 mm) pass rate showed that the simulated delivered doses for lung and liver phantoms using 10 random beam starting phases for each delivered beam matched the planned 4D dose significantly better than the planned AVE dose for phantom motions larger than 1 cm (p ≤ 0.04). CONCLUSIONS: It is recommended to use the planned 4D dose as the institution reported planned dose to IROC to compare with the measured film dose for proton mobile phantoms to improve film Gamma analysis pass rate in the IROC credentialing process.


Asunto(s)
Tomografía Computarizada Cuatridimensional/métodos , Hígado/efectos de la radiación , Pulmón/efectos de la radiación , Movimiento , Fantasmas de Imagen , Protones , Planificación de la Radioterapia Asistida por Computador/métodos , Algoritmos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Órganos en Riesgo/efectos de la radiación , Radiometría/métodos , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos , Respiración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA