Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Cell ; 184(16): 4329-4347.e23, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34237253

RESUMEN

We have produced gene expression profiles of all 302 neurons of the C. elegans nervous system that match the single-cell resolution of its anatomy and wiring diagram. Our results suggest that individual neuron classes can be solely identified by combinatorial expression of specific gene families. For example, each neuron class expresses distinct codes of ∼23 neuropeptide genes and ∼36 neuropeptide receptors, delineating a complex and expansive "wireless" signaling network. To demonstrate the utility of this comprehensive gene expression catalog, we used computational approaches to (1) identify cis-regulatory elements for neuron-specific gene expression and (2) reveal adhesion proteins with potential roles in process placement and synaptic specificity. Our expression data are available at https://cengen.org and can be interrogated at the web application CengenApp. We expect that this neuron-specific directory of gene expression will spur investigations of underlying mechanisms that define anatomy, connectivity, and function throughout the C. elegans nervous system.


Asunto(s)
Caenorhabditis elegans/metabolismo , Sistema Nervioso/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Colorantes Fluorescentes/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Larva/metabolismo , Neuronas/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Motivos de Nucleótidos/genética , RNA-Seq , Secuencias Reguladoras de Ácidos Nucleicos/genética , Transducción de Señal/genética , Factores de Transcripción/metabolismo , Transcripción Genética
2.
Mol Psychiatry ; 27(12): 4918-4927, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36050437

RESUMEN

The balance between excitatory and inhibitory (E/I) signaling is important for maintaining homeostatic function in the brain. Indeed, dysregulation of inhibitory GABA interneurons in the amygdala has been implicated in human mood disorders. We hypothesized that acetylcholine (ACh) signaling in the basolateral amygdala (BLA) might alter E/I balance resulting in changes in stress-sensitive behaviors. We therefore measured ACh release as well as activity of calmodulin-dependent protein kinase II (CAMKII)-, parvalbumin (PV)-, somatostatin (SOM)- and vasoactive intestinal protein (VIP)-expressing neurons in the BLA of awake, behaving male mice. ACh levels and activity of both excitatory and inhibitory BLA neurons increased when animals were actively coping, and decreased during passive coping, in the light-dark box, tail suspension and social defeat. Changes in neuronal activity preceded behavioral state transitions, suggesting that BLA activity may drive the shift in coping strategy. In contrast to exposure to escapable stressors, prolonging ACh signaling with a cholinesterase antagonist changed the balance of activity among BLA cell types, significantly increasing activity of VIP neurons and decreasing activity of SOM cells, with little effect on CaMKII or PV neurons. Knockdown of α7 or ß2-containing nAChR subtypes in PV and SOM, but not CaMKII or VIP, BLA neurons altered behavioral responses to stressors, suggesting that ACh signaling through nAChRs on GABA neuron subtypes contributes to stress-induced changes in behavior. These studies show that ACh modulates the GABAergic signaling network in the BLA, shifting the balance between SOM, PV, VIP and CaMKII neurons, which are normally activated coordinately during active coping in response to stress. Thus, prolonging ACh signaling, as occurs in response to chronic stress, may contribute to maladaptive behaviors by shifting the balance of inhibitory signaling in the BLA.


Asunto(s)
Acetilcolina , Complejo Nuclear Basolateral , Neuronas GABAérgicas , Estrés Psicológico , Animales , Masculino , Ratones , Acetilcolina/metabolismo , Amígdala del Cerebelo/metabolismo , Complejo Nuclear Basolateral/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Neuronas GABAérgicas/metabolismo , Interneuronas/metabolismo , Neuronas/metabolismo , Transducción de Señal/fisiología , Estrés Psicológico/metabolismo
3.
Forensic Sci Med Pathol ; 18(1): 30-36, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34973121

RESUMEN

Rifles are often involved in violent deaths such as homicide and suicide. Consequently, expert knowledge and experimental forensic investigations are important to clarify the nature of ballistic trauma when applied to the human head and neurocranium. This study investigated differences in entrance wound morphology with Synbone® spheres which are described as being comparable to human flat bones. A series of ballistic experiments were conducted using two different rifle calibers (5.56 × 45 mm and 7.62 × 39 mm Full Metal Jacket (FMJ)). Synbone® spheres were used for close-range 0.3 m simulated executions as well as at 25 m and 35 m to simulate urban and military engagements. Results were compared with previously published experimental studies using similar military ammunition. In our study, entry wound morphology closely resembles real forensic cases compared to exit wound and overall shape morphology independently of the distance and the caliber. Circumferential delamination was clearly visible with full metal jacket (FMJ) rounds, yielding similar damage pattern morphology to the human crania. This study documented the presence of hydraulic burst or shock in all ten rounds from all three distances. Krönlein shots were also observed in some cases. Synbone® spheres constitute an acceptable synthetic surrogate for ballistic experiments. The present study offers new initial data on the behavior of Synbone® proxies in ballistic testing of military ammunitions; FMJ gunshot injuries to the human head, for distances that have not previously been published, suggesting that efficient tests can take place under these conditions. Further research on experimental ballistics with a larger number of controlled factors and multiple repetitions is recommended to verify the results of this pilot study before applied in forensic simulations.


Asunto(s)
Armas de Fuego , Personal Militar , Heridas por Arma de Fuego , Balística Forense/métodos , Humanos , Modelos Biológicos , Proyectos Piloto , Cráneo/lesiones
4.
Alcohol Clin Exp Res ; 45(7): 1424-1435, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34086361

RESUMEN

BACKGROUND: A prominent therapeutic indication for alcohol use disorder (AUD) is reduction in chronic repetitive alcohol use. Glutamate α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (AMPARs) regulate chronic alcohol self-administration in preclinical models. Recent evidence indicates that the expression and function of AMPARs require the transmembrane AMPAR regulatory protein γ-8 (TARP γ-8). This study evaluated the preclinical efficacy of JNJ-55511118, a novel, selective, high-affinity inhibitor of TARP γ-8-bound AMPARs, in reducing chronic operant alcohol self-administration. METHODS: Separate groups of male and female C57BL/6J mice (n = 8/sex/group) were trained to lever press for sweetened alcohol (9% v/v + sucrose 2% w/v) or sucrose only (2% w/v) in operant conditioning chambers using an FR-4 schedule of reinforcement. After a 40-day baseline, JNJ-55511118 (0, 1, and 10 mg/kg, p.o.) was administered in randomized order 1 h before self-administration sessions. Parameters of operant behavior including response rate, total reinforcers, and head entries in the drinking troughs were computer recorded. RESULTS: During baseline, responding to alcohol, but not sucrose, was greater in female than male mice. In male mice, both doses of JNJ-55511118 decreased multiple parameters of alcohol self-administration but did not reduce behavior-matched sucrose-only self-administration. JNJ-55511118 had no effect on sweetened alcohol or sucrose self-administration in female mice. Subsequent tests of motor function showed that the lowest effective dose of JNJ-55511118 (1 mg/kg) had no effect on open-field activity in male mice. CONCLUSIONS: This study shows for the first time that TARP γ-8-bound AMPARs regulate a behavioral pathology associated with addiction. The preclinical efficacy of JNJ-55511118 in reducing alcohol self-administration in male mice suggests that inhibition of TARP γ-8-bound AMPARs is a novel and highly significant neural target for developing medications to treat AUD and other forms of addiction.


Asunto(s)
Consumo de Bebidas Alcohólicas/tratamiento farmacológico , Bencimidazoles/farmacología , Canales de Calcio/efectos de los fármacos , Canales de Calcio/fisiología , Etanol/administración & dosificación , Receptores AMPA/antagonistas & inhibidores , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Receptores AMPA/química , Factores Sexuales , Sacarosa/administración & dosificación
5.
Addict Biol ; 26(5): e13049, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33955100

RESUMEN

Addiction is viewed as maladaptive glutamate-mediated neuroplasticity that is regulated, in part, by calcium-permeable AMPA receptor (CP-AMPAR) activity. However, the contribution of CP-AMPARs to alcohol-seeking behavior remains to be elucidated. We evaluated CP-AMPAR activity in the basolateral amygdala (BLA) as a potential target of alcohol that also regulates alcohol self-administration in C57BL/6J mice. Operant self-administration of sweetened alcohol increased spontaneous EPSC frequency in BLA neurons that project to the nucleus accumbens as compared with behavior-matched sucrose controls indicating an alcohol-specific upregulation of synaptic activity. Bath application of the CP-AMPAR antagonist NASPM decreased evoked EPSC amplitude only in alcohol self-administering mice indicating alcohol-induced synaptic insertion of CP-AMPARs in BLA projection neurons. Moreover, NASPM infusion in the BLA dose-dependently decreased the rate of operant alcohol self-administration providing direct evidence for CP-AMPAR regulation of alcohol reinforcement. As most CP-AMPARs are GluA1-containing, we asked if alcohol alters the activation state of GluA1-containing AMPARs. Immunocytochemistry results showed elevated GluA1-S831 phosphorylation in the BLA of alcohol as compared with sucrose mice. To investigate mechanistic regulation of alcohol self-administration by GluA1-containing AMPARs, we evaluated the necessity of GluA1 trafficking using a TET-ON AAV encoding a dominant-negative GluA1 c-terminus (GluA1ct) that blocks activity-dependent synaptic delivery of native GluA1-containing AMPARs. GluA1ct expression in the BLA reduced alcohol self-administration with no effect on sucrose controls. These results show that CP-AMPAR activity and GluA1 trafficking in the BLA mechanistically regulate the reinforcing effects of sweetened alcohol. Pharmacotherapeutic targeting these mechanisms of maladaptive neuroplasticity may aid medical management of alcohol use disorder.


Asunto(s)
Alcoholismo/metabolismo , Amígdala del Cerebelo/metabolismo , Receptores AMPA/metabolismo , Animales , Complejo Nuclear Basolateral/metabolismo , Calcio/metabolismo , Canales de Calcio , Etanol , Masculino , Ratones , Ratones Endogámicos C57BL , Núcleo Accumbens/efectos de los fármacos , Fosforilación , Refuerzo en Psicología , Autoadministración , Transducción de Señal/efectos de los fármacos , Sacarosa/administración & dosificación
6.
Eur J Neurosci ; 2018 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-29791746

RESUMEN

Nicotine, acting through nicotinic acetylcholine receptors (nAChRs), increases the firing rate of both orexigenic agouti-related peptide (AgRP) and anorexigenic pro-opiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARC), yet nicotine and other nAChR agonists decrease food intake in mice. Viral-mediated knockdown of the ß4 nAChR subunit in all neuronal cell types in the ARC prevents the nicotinic agonist cytisine from decreasing food intake, but it is not known whether the ß4 subunit is selectively expressed in anorexigenic neurons or how other nAChR subtypes are distributed in this nucleus. Using translating ribosome affinity purification (TRAP) on ARC tissue from mice with ribosomes tagged in either AgRP or POMC cells, we examined nAChR subunit mRNA levels using real-time PCR. Both AgRP and POMC cells express a comparable panel of nAChR subunits with differences in α7 mRNA levels and a trend for difference in α4 levels, but no differences in ß4 expression. Immunoprecipitation of assembled nAChRs revealed that the ß4 subunit forms assembled channels with α3, ß2 and α4, but not other subunits found in the ARC. Finally, using cell type-selective, virally delivered small hairpin RNAs targeting either the ß4 or α7 subunit, we examined the contribution of each subunit in either AgRP or POMC cells to the behavioural response to nicotine, refining the understanding of nicotinic regulation of this feeding circuit. These experiments identify a more complex set of nAChRs expressed in ARC than in other hypothalamic regions. Thus, the ARC appears to be a particular target of nicotinic modulation.

7.
Tob Control ; 25(Suppl 2): ii50-ii54, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27698211

RESUMEN

BACKGROUND: Nicotine is a major oral irritant in smokeless tobacco products and has an aversive taste. Mentholated smokeless tobacco products are highly popular, suggesting that menthol increases their palatability and may facilitate initiation of product use. While menthol is known to reduce respiratory irritation by tobacco smoke irritants, it is not known whether this activity extends to oral nicotine and its aversive effects. STUDY DESIGN: The two-bottle choice drinking assay was used to characterise aversion and preference in C57BL/6 mice to a range of menthol concentrations (10-200 µg/mL). Then, effects of menthol on oral nicotine aversion were determined. Responses were compared with those in mice deficient in the cold/menthol receptor, TRPM8, expressed in trigeminal sensory neurons innervating the oral cavity. RESULTS: Mice showed aversion to menthol concentrations of 100 µg/mL and above. When presented with a highly aversive concentration of nicotine (200 µg/mL), mice preferred solutions with 50 or 100 µg/mL menthol added over nicotine alone. In contrast to wild-type mice, Trpm8-/- showed a strong aversion to mentholated (100 µg/mL) nicotine (200 µg/mL) and preferred nicotine alone. Trpm8-/- mice show aversion to lower concentrations of menthol than wild-type mice. CONCLUSIONS: Oral menthol can reduce the aversive effects of oral nicotine and, at higher concentrations, acts as an irritant by itself. Menthol's effects in relation to nicotine require TRPM8, the cool temperature sensing ion channel that activates analgesic and counterirritant mechanisms. These mechanisms may underlie preference for menthol-containing smokeless tobacco products and may facilitate initiation of product use.


Asunto(s)
Mentol/farmacología , Nicotina/toxicidad , Agonistas Nicotínicos/toxicidad , Canales Catiónicos TRPM/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Masculino , Mentol/administración & dosificación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nicotina/administración & dosificación , Agonistas Nicotínicos/administración & dosificación , Canales Catiónicos TRPM/genética , Tabaco sin Humo/toxicidad
8.
bioRxiv ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38854056

RESUMEN

Insulin/IGF signaling (IIS) regulates developmental and metabolic plasticity. Conditional regulation of insulin-like peptide expression and secretion promotes different phenotypes in different environments. However, IIS can also be regulated by other, less-understood mechanisms. For example, stability of the only known insulin/IGF receptor in C. elegans, DAF-2/INSR, is regulated by CHIP-dependent ubiquitination. Disruption of chn-1/CHIP reduces longevity in C. elegans by increasing DAF-2/INSR abundance and IIS activity in adults. Likewise, mutation of a ubiquitination site causes daf-2(gk390525) to display gain-of-function phenotypes in adults. However, we show that this allele displays loss-of-function phenotypes in larvae, and that its effect on IIS activity transitions from negative to positive during development. In contrast, the allele acts like a gain-of-function in larvae cultured at high temperature, inhibiting temperature-dependent dauer formation. Disruption of chn-1/CHIP causes an increase in IIS activity in starved L1 larvae, unlike daf-2(gk390525). CHN-1/CHIP ubiquitinates DAF-2/INSR at multiple sites. These results suggest that the sites that are functionally relevant to negative regulation of IIS vary in larvae and adults, at different temperatures, and in nutrient-dependent fashion, revealing additional layers of IIS regulation.

9.
Cell Rep ; 43(3): 113857, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38421866

RESUMEN

Motor neurons (MNs) constitute an ancient cell type targeted by multiple adult-onset diseases. It is therefore important to define the molecular makeup of adult MNs in animal models and extract organizing principles. Here, we generate a comprehensive molecular atlas of adult Caenorhabditis elegans MNs and a searchable database. Single-cell RNA sequencing of 13,200 cells reveals that ventral nerve cord MNs cluster into 29 molecularly distinct subclasses. Extending C. elegans Neuronal Gene Expression Map and Network (CeNGEN) findings, all MN subclasses are delineated by distinct expression codes of either neuropeptide or transcription factor gene families. Strikingly, combinatorial codes of homeodomain transcription factor genes succinctly delineate adult MN diversity in both C. elegans and mice. Further, molecularly defined MN subclasses in C. elegans display distinct patterns of connectivity. Hence, our study couples the connectivity map of the C. elegans motor circuit with a molecular atlas of its constituent MNs and uncovers organizing principles and conserved molecular codes of adult MN diversity.


Asunto(s)
Proteínas de Caenorhabditis elegans , Factores de Transcripción , Animales , Ratones , Factores de Transcripción/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Neuronas Motoras/metabolismo , Regulación de la Expresión Génica , Proteínas de Caenorhabditis elegans/metabolismo
10.
Proc Natl Acad Sci U S A ; 107(35): 15613-8, 2010 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-20679234

RESUMEN

Little is known about how normal aging affects the brain. Recent evidence suggests that neuronal loss is not ubiquitous in aging neocortex. Instead, subtle and still controversial, region- and layer-specific alterations of neuron morphology and synapses are reported during aging, leading to the notion that discrete changes in neural circuitry may underlie age-related cognitive deficits. Although deficits in sensory function suggest that primary sensory cortices are affected by aging, our understanding of the age-related cellular and molecular changes is sparse. To assess the effect of aging on the organization of olfactory bulb (OB) circuitry, we carried out quantitative morphometric analyses in the mouse OB at 2, 6, 12, 18, and 24 mo. Our data establish that the volumes of the major OB layers do not change during aging. Parallel to this, we are unique in demonstrating that the stereotypic glomerular convergence of M72-GFP OSN axons in the OB is preserved during aging. We then provide unique evidence of the stability of projection neurons and interneurons subpopulations in the aging mouse OB, arguing against the notion of an age-dependent widespread loss of neurons. Finally, we show ultrastructurally a significant layer-specific loss of synapses; synaptic density is reduced in the glomerular layer but not the external plexiform layer, leading to an imbalance in OB circuitry. These results suggest that reduction of afferent synaptic input and local modulatory circuit synapses in OB glomeruli may contribute to specific age-related alterations of the olfactory function.


Asunto(s)
Envejecimiento/fisiología , Red Nerviosa/fisiología , Bulbo Olfatorio/fisiología , Sinapsis/fisiología , Animales , Axones/fisiología , Dendritas/fisiología , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Interneuronas/citología , Interneuronas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Microscopía Confocal , Microscopía Electrónica , Red Nerviosa/citología , Bulbo Olfatorio/metabolismo , Bulbo Olfatorio/ultraestructura , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/fisiología
11.
bioRxiv ; 2023 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-37577463

RESUMEN

Motor neurons (MNs) constitute an ancient cell type targeted by multiple adult-onset diseases. It is therefore important to define the molecular makeup of adult MNs in animal models and extract organizing principles. Here, we generated a comprehensive molecular atlas of adult Caenorhabditis elegans MNs and a searchable database (http://celegans.spinalcordatlas.org). Single-cell RNA-sequencing of 13,200 cells revealed that ventral nerve cord MNs cluster into 29 molecularly distinct subclasses. All subclasses are delineated by unique expression codes of either neuropeptide or transcription factor gene families. Strikingly, we found that combinatorial codes of homeodomain transcription factor genes define adult MN diversity both in C. elegans and mice. Further, molecularly defined MN subclasses in C. elegans display distinct patterns of connectivity. Hence, our study couples the connectivity map of the C. elegans motor circuit with a molecular atlas of its constituent MNs, and uncovers organizing principles and conserved molecular codes of adult MN diversity.

12.
Psychopharmacology (Berl) ; 240(6): 1261-1273, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37055596

RESUMEN

RATIONALE: The development and progression of alcohol use disorder (AUD) are widely viewed as maladaptive neuroplasticity. The transmembrane alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) regulatory protein γ8 (TARP γ-8) is a molecular mechanism of neuroplasticity that has not been evaluated in AUD or other addictions. OBJECTIVE: To address this gap in knowledge, we evaluated the mechanistic role of TARP γ-8 bound AMPAR activity in the basolateral amygdala (BLA) and ventral hippocampus (vHPC) in the positive reinforcing effects of alcohol, which drive repetitive alcohol use throughout the course of AUD, in male C57BL/6 J mice. These brain regions were selected because they exhibit high levels of TARP γ-8 expression and send glutamate projections to the nucleus accumbens (NAc), which is a key nucleus in the brain reward pathway. METHODS AND RESULTS: Site-specific pharmacological inhibition of AMPARs bound to TARP γ-8 in the BLA via bilateral infusion of the selective negative modulator JNJ-55511118 (0-2 µg/µl/side) significantly decreased operant alcohol self-administration with no effect on sucrose self-administration in behavior-matched controls. Temporal analysis showed that reductions in alcohol-reinforced response rate occurred > 25 min after the onset of responding, consistent with a blunting of the positive reinforcing effects of alcohol in the absence of nonspecific behavioral effects. In contrast, inhibition of TARP γ-8 bound AMPARs in the vHPC selectively decreased sucrose self-administration with no effect on alcohol. CONCLUSIONS: This study reveals a novel brain region-specific role of TARP γ-8 bound AMPARs as a molecular mechanism of the positive reinforcing effects of alcohol and non-drug rewards.


Asunto(s)
Alcoholismo , Complejo Nuclear Basolateral , Canales de Calcio , Etanol , Hipocampo , Receptores AMPA , Sacarosa , Animales , Masculino , Ratones , Alcoholismo/etiología , Alcoholismo/metabolismo , Complejo Nuclear Basolateral/efectos de los fármacos , Complejo Nuclear Basolateral/metabolismo , Canales de Calcio/metabolismo , Etanol/administración & dosificación , Etanol/farmacología , Ácido Glutámico/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Locomoción/efectos de los fármacos , Ratones Endogámicos C57BL , Plasticidad Neuronal/efectos de los fármacos , Núcleo Accumbens/metabolismo , Receptores AMPA/antagonistas & inhibidores , Receptores AMPA/metabolismo , Refuerzo en Psicología , Recompensa , Sacarosa/administración & dosificación , Sacarosa/farmacología
13.
Neuron ; 111(22): 3570-3589.e5, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37935195

RESUMEN

Efforts are ongoing to map synaptic wiring diagrams, or connectomes, to understand the neural basis of brain function. However, chemical synapses represent only one type of functionally important neuronal connection; in particular, extrasynaptic, "wireless" signaling by neuropeptides is widespread and plays essential roles in all nervous systems. By integrating single-cell anatomical and gene-expression datasets with biochemical analysis of receptor-ligand interactions, we have generated a draft connectome of neuropeptide signaling in the C. elegans nervous system. This network is characterized by high connection density, extended signaling cascades, autocrine foci, and a decentralized topology, with a large, highly interconnected core containing three constituent communities sharing similar patterns of input connectivity. Intriguingly, several key network hubs are little-studied neurons that appear specialized for peptidergic neuromodulation. We anticipate that the C. elegans neuropeptidergic connectome will serve as a prototype to understand how networks of neuromodulatory signaling are organized.


Asunto(s)
Conectoma , Animales , Caenorhabditis elegans/fisiología , Neuronas/fisiología , Expresión Génica , Sinapsis
14.
Elife ; 122023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37862092

RESUMEN

The assembly of the mammalian brain is orchestrated by temporally coordinated waves of gene expression. Post-transcriptional regulation by microRNAs (miRNAs) is a key aspect of this program. Indeed, deletion of neuron-enriched miRNAs induces strong developmental phenotypes, and miRNA levels are altered in patients with neurodevelopmental disorders. However, the mechanisms used by miRNAs to instruct brain development remain largely unexplored. Here, we identified miR-218 as a critical regulator of hippocampal assembly. MiR-218 is highly expressed in the hippocampus and enriched in both excitatory principal neurons (PNs) and GABAergic inhibitory interneurons (INs). Early life inhibition of miR-218 results in an adult brain with a predisposition to seizures. Changes in gene expression in the absence of miR-218 suggest that network assembly is impaired. Indeed, we find that miR-218 inhibition results in the disruption of early depolarizing GABAergic signaling, structural defects in dendritic spines, and altered intrinsic membrane excitability. Conditional knockout of Mir218-2 in INs, but not PNs, is sufficient to recapitulate long-term instability. Finally, de-repressing Kif21b and Syt13, two miR-218 targets, phenocopies the effects on early synchronous network activity induced by miR-218 inhibition. Taken together, the data suggest that miR-218 orchestrates formative events in PNs and INs to produce stable networks.


Asunto(s)
MicroARNs , Animales , Adulto , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neuronas/metabolismo , Hipocampo/metabolismo , Interneuronas/metabolismo , Encéfalo/metabolismo , Mamíferos/genética
15.
Cell Rep ; 41(2): 111473, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36223742

RESUMEN

Nutrient availability governs growth and quiescence, and many animals arrest development when starved. Using C. elegans L1 arrest as a model, we show that gene expression changes deep into starvation. Surprisingly, relative expression of germline-enriched genes increases for days. We conditionally degrade the large subunit of RNA polymerase II using the auxin-inducible degron system and analyze absolute expression levels. We find that somatic transcription is required for survival, but the germline maintains transcriptional quiescence. Thousands of genes are continuously transcribed in the soma, though their absolute abundance declines, such that relative expression of germline transcripts increases given extreme transcript stability. Aberrantly activating transcription in starved germ cells compromises reproduction, demonstrating important physiological function of transcriptional quiescence. This work reveals alternative somatic and germline gene-regulatory strategies during starvation, with the soma maintaining a robust transcriptional response to support survival and the germline maintaining transcriptional quiescence to support future reproductive success.


Asunto(s)
Proteínas de Caenorhabditis elegans , Inanición , Animales , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/metabolismo , Ácidos Indolacéticos/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Inanición/metabolismo
16.
BMJ Mil Health ; 168(3): 196-199, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32393517

RESUMEN

BACKGROUND: Handguns and rifles are often involved in violent deaths such as homicide and suicide. Consequently, forensic investigations are important to clarify the nature of ballistic trauma. METHODS: This study investigated the differences in entrance and exit wound morphology with Bos taurus (bovine) scapulae that have two cortical layers surrounding a central cancellous bone section which are comparable with human flat bones, with a series of experiments using six different calibres (0.22 Long Rifle, 9×19 mm North Atlantic Treaty Organization, 0.40 Smith & Wesson, 0.45 Automatic Colt Pistol, 5.56×45 mm and 7.62×51 mm). B. taurus (bovine) scapulae were used for closed range 30 cm simulated executions. RESULTS: The ballistic experiments presented similarities in entrance wound morphology and exit wound bevelling with that of recognised forensic cases. As muzzle velocity increased, bevelling increased. Circumferential delamination is clearly visible with full metal jacket rounds, yielding similar bone damage morphology as human crania. CONCLUSION: Bovine scapulae seem appropriate for ballistic simulations of flat bone injuries on the macroscopic level, if the correct portion of the scapulae is deployed. More research is needed to further substantiate these interpretations.


Asunto(s)
Armas de Fuego , Heridas por Arma de Fuego , Animales , Bovinos , Balística Forense , Caballos , Humanos , Masculino , Escápula
17.
BMJ Mil Health ; 168(5): 354-358, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32474434

RESUMEN

BACKGROUND: The prevalence of civilian 0.223 ammunition is widespread. Due to low costs and the same dimensions as a 5.56×45 mm North Atlantic Treaty Organization, this round is exceptionally popular. However, recent mass shootings have employed soft point (SP) expanding ammunition to cause grievous wounds compared with military full metal jacket (FMJ) rounds that do not rapidly expand on impact. METHODS: The aim of this given study is to compare FMJ and SP rounds to determine if there are diagnostic differences between the bullet types in the wounds inflicted to flat bones. Bos taurus scapulae were used for 25 m simulated cranial gunshot injuries. Scanning electron microscopy was employed to assess the difference in wound morphology and elemental analysis between SP and FMJ rounds. RESULTS: Entrance and exit wound morphology change significantly between the two different types of ammunition as seen with circumferential delamination which is indicative of FMJ rounds and is not seen with the softer SP hunting rounds. Lead staining of the entrance wound is visible on only the SP rounds. CONCLUSION: Gunshot flat bone wound morphology is distinctively different between SP and FMJ rounds. Circumferential delamination is only seen with FMJ due to the hardness of the round. Lead staining is only seen with SP rounds due to bullet composition.


Asunto(s)
Heridas por Arma de Fuego , Animales , Bovinos , Humanos , Escápula
18.
G3 (Bethesda) ; 11(7)2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-33856427

RESUMEN

A recent and powerful technique is to obtain transcriptomes from rare cell populations, such as single neurons in Caenorhabditis elegans, by enriching dissociated cells using fluorescent sorting. However, these cell samples often have low yields of RNA that present challenges in library preparation. This can lead to PCR duplicates, noisy gene expression for lowly expressed genes, and other issues that limit endpoint analysis. Furthermore, some common resources, such as sequence-specific kits for removing ribosomal RNA, are not optimized for nonmammalian samples. To advance library construction for such challenging samples, we compared two approaches for building RNAseq libraries from less than 10 nanograms of C. elegans RNA: SMARTSeq V4 (Takara), a widely used kit for selecting poly-adenylated transcripts; and SoLo Ovation (Tecan Genomics), a newly developed ribodepletion-based approach. For ribodepletion, we used a custom kit of 200 probes designed to match C. elegans rRNA gene sequences. We found that SoLo Ovation, in combination with our custom C. elegans probe set for rRNA depletion, detects an expanded set of noncoding RNAs, shows reduced noise in lowly expressed genes, and more accurately counts expression of long genes. The approach described here should be broadly useful for similar efforts to analyze transcriptomics when RNA is limiting.


Asunto(s)
Caenorhabditis elegans , Poli A , Animales , Poli A/genética , Caenorhabditis elegans/genética , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ARN/métodos , ARN Ribosómico/genética , ARN/genética
19.
Elife ; 102021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34165430

RESUMEN

The generation of the enormous diversity of neuronal cell types in a differentiating nervous system entails the activation of neuron type-specific gene batteries. To examine the regulatory logic that controls the expression of neuron type-specific gene batteries, we interrogate single cell expression profiles of all 118 neuron classes of the Caenorhabditis elegans nervous system for the presence of DNA binding motifs of 136 neuronally expressed C. elegans transcription factors. Using a phylogenetic footprinting pipeline, we identify cis-regulatory motif enrichments among neuron class-specific gene batteries and we identify cognate transcription factors for 117 of the 118 neuron classes. In addition to predicting novel regulators of neuronal identities, our nervous system-wide analysis at single cell resolution supports the hypothesis that many transcription factors directly co-regulate the cohort of effector genes that define a neuron type, thereby corroborating the concept of so-called terminal selectors of neuronal identity. Our analysis provides a blueprint for how individual components of an entire nervous system are genetically specified.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Neuronas/fisiología , Factores de Transcripción/genética , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Simulación por Computador , Sistema Nervioso/crecimiento & desarrollo , Factores de Transcripción/metabolismo
20.
J Clin Invest ; 130(3): 1336-1349, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31743111

RESUMEN

A single subanesthetic dose of ketamine, an NMDA receptor (NMDAR) antagonist, produces rapid and sustained antidepressant actions in depressed patients, addressing a major unmet need for the treatment of mood disorders. Ketamine produces a rapid increase in extracellular glutamate and synaptic formation in the prefrontal cortex, but the initial cellular trigger that initiates this increase and ketamine's behavioral actions has not been identified. To address this question, we used a combination of viral shRNA and conditional mutation to produce cell-specific knockdown or deletion of a key NMDAR subunit, GluN2B, implicated in the actions of ketamine. The results demonstrated that the antidepressant actions of ketamine were blocked by GluN2B-NMDAR knockdown on GABA (Gad1) interneurons, as well as subtypes expressing somatostatin (Sst) or parvalbumin (Pvalb), but not glutamate principle neurons in the medial prefrontal cortex (mPFC). Further analysis of GABA subtypes showed that cell-specific knockdown or deletion of GluN2B in Sst interneurons blocked or occluded the antidepressant actions of ketamine and revealed sex-specific differences that are associated with excitatory postsynaptic currents on mPFC principle neurons. These findings demonstrate that GluN2B-NMDARs on GABA interneurons are the initial cellular trigger for the rapid antidepressant actions of ketamine and show sex-specific adaptive mechanisms to GluN2B modulation.


Asunto(s)
Antidepresivos/farmacología , Neuronas GABAérgicas/metabolismo , Interneuronas/metabolismo , Ketamina/farmacología , Caracteres Sexuales , Animales , Femenino , Neuronas GABAérgicas/patología , Técnicas de Inactivación de Genes , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo , Interneuronas/patología , Masculino , Ratones , Ratones Transgénicos , Parvalbúminas/genética , Parvalbúminas/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Somatostatina/genética , Somatostatina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA