Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
PLoS Genet ; 20(7): e1011344, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39074161

RESUMEN

Deciphering the evolutionary forces controlling insecticide resistance in malaria vectors remains a prerequisite to designing molecular tools to detect and assess resistance impact on control tools. Here, we demonstrate that a 4.3kb transposon-containing structural variation is associated with pyrethroid resistance in central/eastern African populations of the malaria vector Anopheles funestus. In this study, we analysed Pooled template sequencing data and direct sequencing to identify an insertion of 4.3kb containing a putative retro-transposon in the intergenic region of two P450s CYP6P5-CYP6P9b in mosquitoes of the malaria vector Anopheles funestus from Uganda. We then designed a PCR assay to track its spread temporally and regionally and decipher its role in insecticide resistance. The insertion originates in or near Uganda in East Africa, where it is fixed and has spread to high frequencies in the Central African nation of Cameroon but is still at low frequency in West Africa and absent in Southern Africa. A marked and rapid selection was observed with the 4.3kb-SV frequency increasing from 3% in 2014 to 98% in 2021 in Cameroon. A strong association was established between this SV and pyrethroid resistance in field populations and is reducing pyrethroid-only nets' efficacy. Genetic crosses and qRT-PCR revealed that this SV enhances the expression of CYP6P9a/b but not CYP6P5. Within this structural variant (SV), we identified putative binding sites for transcription factors associated with the regulation of detoxification genes. An inverse correlation was observed between the 4.3kb SV and malaria parasite infection, indicating that mosquitoes lacking the 4.3kb SV were more frequently infected compared to those possessing it. Our findings highlight the underexplored role and rapid spread of SVs in the evolution of insecticide resistance and provide additional tools for molecular surveillance of insecticide resistance.


Asunto(s)
Anopheles , Sistema Enzimático del Citocromo P-450 , Elementos Transponibles de ADN , Resistencia a los Insecticidas , Insecticidas , Malaria , Mosquitos Vectores , Piretrinas , Animales , Anopheles/genética , Anopheles/parasitología , Anopheles/efectos de los fármacos , Piretrinas/farmacología , Resistencia a los Insecticidas/genética , Mosquitos Vectores/genética , Mosquitos Vectores/parasitología , Mosquitos Vectores/efectos de los fármacos , Malaria/transmisión , Malaria/parasitología , Malaria/genética , Elementos Transponibles de ADN/genética , Sistema Enzimático del Citocromo P-450/genética , Insecticidas/farmacología , Uganda , Humanos , Camerún
2.
BMC Infect Dis ; 24(1): 733, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054424

RESUMEN

Elevated resistance to pyrethroids in major malaria vectors has led to the introduction of novel insecticides including neonicotinoids. There is a fear that efficacy of these new insecticides could be impacted by cross-resistance mechanisms from metabolic resistance to pyrethroids. In this study, after evaluating the resistance to deltamethrin, clothianidin and mixture of clothianidin + deltamethrin in the lab using CDC bottle assays, the efficacy of the new IRS formulation Fludora® Fusion was tested in comparison to clothianidin and deltamethrin applied alone using experimental hut trials against wild free-flying pyrethroid-resistant Anopheles funestus from Elende and field An. gambiae collected from Nkolondom reared in the lab and released in the huts. Additionally, cone tests on the treated walls were performed each month for a period of twelve months to evaluate the residual efficacy of the sprayed products. Furthermore, the L1014F-kdr target-site mutation and the L119F-GSTe2 mediated metabolic resistance to pyrethroids were genotyped on a subset of mosquitoes from the EHT to assess the potential cross-resistance. All Anopheles species tested were fully susceptible to clothianidin and clothianidin + deltamethrin mixture in CDC bottle assay while resistance was noted to deltamethrin. Accordingly, Fludora® Fusion (62.83% vs 42.42%) and clothianidin (64.42% vs 42.42%) induced significantly higher mortality rates in EHT than deltamethrin (42.42%) against free flying An. funestus from Elende in month 1 (M1) and no significant difference in mortality was observed between the first (M1) and sixth (M6) months of the evaluation (P > 0.05). However, lower mortality rates were recorded against An. gambiae s.s from Nkolondom (mortality rates 50%, 45.56% and 26.68%). In-situ cone test on the wall showed a high residual efficacy of Fludora® Fusion and clothianidin on the susceptible strain KISUMU (> 12 months) and moderately on the highly pyrethroid-resistant An. gambiae strain from Nkolondom (6 months). Interestingly, no association was observed between the L119F-GSTe2 mutation and the ability of mosquitoes to survive exposure to Fludora® Fusion, whereas a trend was observed with the L1014F-kdr mutation. This study highlights that Fludora® Fusion, through its clothianidin component, has good potential of controlling pyrethroid-resistant mosquitoes with prolonged residual efficacy. This could be therefore an appropriate tool for vector control in several malaria endemic regions.


Asunto(s)
Anopheles , Resistencia a los Insecticidas , Insecticidas , Malaria , Control de Mosquitos , Mosquitos Vectores , Piretrinas , Animales , Piretrinas/farmacología , Anopheles/efectos de los fármacos , Anopheles/genética , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Control de Mosquitos/métodos , Camerún , Mosquitos Vectores/efectos de los fármacos , Mosquitos Vectores/genética , Malaria/transmisión , Malaria/prevención & control , Guanidinas/farmacología , Nitrilos/farmacología , Femenino , Tiazoles/farmacología , Neonicotinoides/farmacología , Vivienda
3.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39125661

RESUMEN

The versatility of cytochrome P450 reductase (CPR) in transferring electrons to P450s from other closely related species has been extensively exploited, e.g., by using An. gambiae CPR (AgCPR), as a homologous surrogate, to validate the role of An. funestus P450s in insecticide resistance. However, genomic variation between the AgCPR and An. funestus CPR (AfCPR) suggests that the full metabolism spectrum of An. funestus P450s might be missed when using AgCPR. To test this hypothesis, we expressed AgCPR and AfCPR side-by-side with CYP6P9a and CYP6P9b and functionally validated their role in the detoxification of insecticides from five different classes. Major variations were observed within the FAD- and NADP-binding domains of AgCPR and AfCPR, e.g., the coordinates of the second FAD stacking residue AfCPR-Y456 differ from that of AgCPR-His456. While no significant differences were observed in the cytochrome c reductase activities, when co-expressed with their endogenous AfCPR, the P450s significantly metabolized higher amounts of permethrin and deltamethrin, with CYP6P9b-AfCPR membrane metabolizing α-cypermethrin as well. Only the CYP6P9a-AfCPR membrane significantly metabolized DDT (producing dicofol), bendiocarb, clothianidin, and chlorfenapyr (bioactivation into tralopyril). This demonstrates the broad substrate specificity of An. funestus CYP6P9a/-b, capturing their role in conferring cross-resistance towards unrelated insecticide classes, which can complicate resistance management.


Asunto(s)
Anopheles , Resistencia a los Insecticidas , Insecticidas , NADPH-Ferrihemoproteína Reductasa , Piretrinas , Anopheles/genética , Anopheles/efectos de los fármacos , Anopheles/enzimología , Anopheles/metabolismo , Animales , Resistencia a los Insecticidas/genética , NADPH-Ferrihemoproteína Reductasa/metabolismo , NADPH-Ferrihemoproteína Reductasa/genética , Insecticidas/farmacología , Insecticidas/metabolismo , Piretrinas/farmacología , Piretrinas/metabolismo , Oxidación-Reducción , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Especificidad por Sustrato , Nitrilos/metabolismo , Nitrilos/farmacología , Permetrina/farmacología
4.
Malar J ; 22(1): 19, 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36650503

RESUMEN

Since its first report in Anopheles mosquitoes in 1950s, insecticide resistance has spread very fast to most sub-Saharan African malaria-endemic countries, where it is predicted to seriously jeopardize the success of vector control efforts, leading to rebound of disease cases. Supported mainly by four mechanisms (metabolic resistance, target site resistance, cuticular resistance, and behavioural resistance), this phenomenon is associated with intrinsic changes in the resistant insect vectors that could influence development of invading Plasmodium parasites. A literature review was undertaken using Pubmed database to collect articles evaluating directly or indiretly the impact of insecticide resistance and the associated mechanisms on key determinants of malaria vector competence including sialome composition, anti-Plasmodium immunity, intestinal commensal microbiota, and mosquito longevity. Globally, the evidence gathered is contradictory even though the insecticide resistant vectors seem to be more permissive to Plasmodium infections. The actual body of knowledge on key factors to vectorial competence, such as the immunity and microbiota communities of the insecticide resistant vector is still very insufficient to definitively infer on the epidemiological importance of these vectors against the susceptible counterparts. More studies are needed to fill important knowledge gaps that could help predicting malaria epidemiology in a context where the selection and spread of insecticide resistant vectors is ongoing.


Asunto(s)
Anopheles , Insecticidas , Malaria , Plasmodium , Animales , Humanos , Resistencia a los Insecticidas , Malaria/epidemiología , Mosquitos Vectores , Insecticidas/farmacología , Control de Mosquitos
5.
Malar J ; 22(1): 123, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37055836

RESUMEN

BACKGROUND: Malaria remains one of the main causes of morbidity and mortality in Cameroon. To inform vector control intervention decision making, malaria vector surveillance was conducted monthly from October 2018 to September 2020 in five selected sentinel sites (Gounougou and Simatou in the North, and Bonabéri, Mangoum and Nyabessang in the South). METHODS: Human landing catches (HLCs), U.S. Centers for Disease Control and Prevention (CDC) light traps, and pyrethrum spray catches (PSCs) were used to assess vector density, species composition, human biting rate (HBR), endophagic index, indoor resting density (IRD), parity, sporozoite infection rates, entomological inoculation rate (EIR), and Anopheles vectorial capacity. RESULTS: A total of 139,322 Anopheles mosquitoes from 18 species (or 21 including identified sub-species) were collected across all sites. Out of the 18 species, 12 were malaria vectors including Anopheles gambiae sensu lato (s.l.), Anopheles funestus s.l.., Anopheles nili, Anopheles moucheti, Anopheles paludis, Anopheles demeilloni, Anopheles. pharoensis, Anopheles ziemanni, Anopheles multicinctus, Anopheles tenebrosus, Anopheles rufipes, and Anopheles marshallii. Anopheles gambiae s.l. remains the major malaria vector (71% of the total Anopheles) collected, though An. moucheti and An. paludis had the highest sporozoite rates in Nyabessang. The mean indoor HBR of Anopheles ranged from 11.0 bites/human/night (b/h/n) in Bonabéri to 104.0 b/h/n in Simatou, while outdoors, it varied from 24.2 b/h/n in Mangoum to 98.7 b/h/n in Simatou. Anopheles gambiae s.l. and An. moucheti were actively biting until at least 8:00 a.m. The mean Anopheles IRD was 17.1 females/room, and the parity rate was 68.9%. The mean EIRs for each site were 55.4 infective bites/human/month (ib/h/m) in Gounougou, 99.0 ib/h/m in Simatou, 51.2 ib/h/m in Mangoum, 24.4 ib/h/m in Nyabessang, and 18.1 ib/h/m in Bonabéri. Anopheles gambiae s.l. was confirmed as the main malaria vector with the highest vectorial capacity in all sites based on sporozoite rate, except in Nyabessang. CONCLUSION: These findings highlight the high malaria transmission occurring in Cameroon and will support the National Malaria Control Program to design evidence-based malaria vector control strategies, and deployment of effective and integrated vector control interventions to reduce malaria transmission and burden in Cameroon, where several Anopheles species could potentially maintain year-round transmission.


Asunto(s)
Anopheles , Malaria , Piretrinas , Animales , Femenino , Humanos , Malaria/prevención & control , Camerún/epidemiología , Mosquitos Vectores , Esporozoítos
6.
BMC Infect Dis ; 23(1): 738, 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37891470

RESUMEN

BACKGROUND: The impact of metabolic resistance to insecticides on malaria transmission remains poorly characterised notably through application of entomological parameters. The lack of resistance markers has been one of the limiting factors preventing a robust assessment of such impact. To this end, the present study sought to investigate how the L119F-Gste2 metabolic gene influences entomological parameters underpinning mosquitos' propensity to transmit Plasmodium spp. METHODS: Longitudinal studies were carried out in Mibellon and Elende, two different eco-climatic settings in Cameroon and mosquitoes were collected using Human Landing Catch (HLC), Centre for Disease Control Light Trap (CDC-LT) and Pyrethrum Spray Catch (PSC) technics. Plasmodium sporozoite parasites were detected by TaqMan and Nested PCR, and blood meal origin by ELISA. The allele-specific PCR (AS-PCR) method was used to genotype the L119F-GSTe2 marker and association with malaria transmission was established by comparing key transmission parameters such as the Entomological Inoculation Rate (EIR) between individuals with different L119F-GSTe2 genotypes. RESULTS: An. funestus s.l was the predominant malaria vector collected during the entomological survey in both sites (86.6% and 96.4% in Elende and Mibellon, respectively) followed by An. gambiae s.l (7.5% and 2.4%, respectively). Sporozoite infection rates were very high in both collection sites (8.7% and 11% in Elende and Mibellon, respectively). An. funestus s.s exhibited a very high entomological inoculation rate (EIR) (66 ib/h/month and 792 ib/h/year) and was responsible for 98.6% of all malaria transmission events occurring in both sites. The Human Blood Index was also high in both locations (HBI = 94%). An. funestus s.s. mosquitoes with both 119 F/F (RR) and L119F (RS) genotypes had a significantly higher transmission intensity than their susceptible L/L119 (SS) counterparts (IRR = 2.2, 95%CI (1.1-5.2), p = 0.03; IRR = 2.5, 95% CI (1.2-5.8), p = 0.01 respectively). CONCLUSION: This study highlights the major role that An. funestus s.s plays in malaria transmission in Cameroon with an aggravation from GSTe2-based metabolic resistance.


Asunto(s)
Anopheles , Malaria , Plasmodium , Animales , Humanos , Malaria/prevención & control , Anopheles/genética , Anopheles/parasitología , Camerún/epidemiología , Mosquitos Vectores/genética , Mosquitos Vectores/parasitología
7.
BMC Infect Dis ; 22(1): 660, 2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35907831

RESUMEN

BACKGROUND: Increased intensity of pyrethroid resistance is threatening the effectiveness of insecticide-based interventions to control malaria in Africa. Assessing the extent of this aggravation and its impact on the efficacy of these tools is vital to ensure the continued control of major vectors. Here we took advantage of 2009 and 2014 data from Malawi to establish the extent of the resistance escalation in 2021 and assessed its impact on various bed nets performance. METHODS: Indoor blood-fed and wild female Anopheles (An) mosquitoes were collected with an electric aspirator in Chikwawa. Cocktail and SINE PCR were used to identify sibling species belonging to An. funestus group and An. gambiae complex. The susceptibility profile to the four classes of insecticides was assessed using the WHO tubes bioassays. Data were saved in an Excel file. Analysis was done using Vassarstats and figures by Graph Pad. RESULTS: In this study, a high level of resistance was observed with pyrethroids (permethrin, deltamethrin and alpha-cypermethrin with mortality rate at 5x discriminating concentration (DC) < 50% and Mortality rate at 10x DC < 70%). A high level of resistance was also observed to carbamate (bendiocarb) with mortality rate at 5x DC < 25%). Aggravation of resistance was also noticed between 2009 and 2021. For pyrethroids, the mortality rate for permethrin reduced from 47.2% in 2009 to 13% in 2014 and 6.7% in 2021. For deltamethrin, the mortality rate reduced from 42.3% in 2009 to 1.75% in 2014 and 5.2% in 2021. For Bendiocarb, the mortality rate reduced from 60% in 2009 to 30.1% in 2014 and 12.2% in 2021. The high resistance observed is consistent with a drastic loss of pyrethroid-only bed nets efficacy although Piperonyl butoxide (PBO)-based nets remain effective. The resistance pattern observed was linked with high up-regulation of the P450 genes CYP6P9a, CYP6P9b and CYP6M7 in An. funestus s.s. mosquitoes surviving exposure to deltamethrin at 1x, 5x and 10x DC. A significant association was observed between the 6.5 kb structural variant and resistance escalation with homozygote resistant (SV+/SV+) more likely to survive exposure to 5x and 10x (OR = 4.1; P < 0.001) deltamethrin than heterozygotes. However, a significant proportion of mosquitoes survived the synergist assays with PBO suggesting that other mechanisms than P450s are present. CONCLUSIONS: This resistance aggravation in An. funestus s.s. Malawian population highlights an urgent need to deploy novel control tools not relying on pyrethroids to improve the effectiveness of vector control.


Asunto(s)
Anopheles , Insecticidas , Malaria , Piretrinas , Alelos , Animales , Anopheles/genética , Femenino , Humanos , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Malaria/epidemiología , Malaui , Mosquitos Vectores/genética , Permetrina , Piretrinas/farmacología
8.
BMC Infect Dis ; 22(1): 799, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36284278

RESUMEN

BACKGROUND: Aggravation of insecticide resistance in malaria vectors is threatening the efforts to control malaria by reducing the efficacy of insecticide-based interventions hence needs to be closely monitored. This study investigated the intensity of insecticide resistance of two major malaria vectors An. funestus sensu stricto (s.s.) and An. gambiae sensu lato (s.l.) collected in southern Ghana and assessed the bio-efficacy of several long-lasting insecticidal nets (LLINs) against these mosquito populations. METHODS: The insecticide susceptibility profiles of Anopheles funestus s.s. and Anopheles gambiae s.l. populations from Obuasi region (Atatam), southern Ghana were characterized and the bio-efficacy of some LLINs was assessed to determine the impact of insecticide resistance on the effectiveness of these tools. Furthermore, molecular markers associated with insecticide resistance in both species were characterized in the F0 and F1 populations using PCR and qPCR methods. RESULTS: Anopheles funestus s.s. was the predominant species and was resistant to pyrethroids, organochlorine and carbamate insecticides, but fully susceptible to organophosphates. An. gambiae s.l. was resistant to all four insecticide classes. High intensity of resistance to 5 × and 10 × the discriminating concentration (DC) of pyrethroids was observed in both species inducing a considerable loss of efficacy of long-lasting insecticidal nets (LLINs). Temporal expression analysis revealed a massive 12-fold increase in expression of the CYP6P4a cytochrome P450 gene in An. funestus s.s., initially from a fold change of 41 (2014) to 500 (2021). For both species, the expression of candidate genes did not vary according to discriminating doses. An. gambiae s.l. exhibited high frequencies of target-site resistance including Vgsc-1014F (90%) and Ace-1 (50%) while these mutations were absent in An. funestus s.s. CONCLUSIONS: The multiple and high intensity of resistance observed in both malaria vectors highlights the need to implement resistance management strategies and the introduction of new insecticide chemistries.


Asunto(s)
Anopheles , Mosquiteros Tratados con Insecticida , Insecticidas , Malaria , Piretrinas , Humanos , Animales , Anopheles/genética , Insecticidas/farmacología , Malaria/prevención & control , Control de Mosquitos/métodos , Ghana , Mosquitos Vectores/genética , Resistencia a los Insecticidas/genética , Piretrinas/farmacología , Carbamatos , Organofosfatos
9.
Pestic Biochem Physiol ; 173: 104772, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33771251

RESUMEN

Metabolic resistance driven by multiple P450 genes is worsening insecticide resistance in malaria vectors. However, it remains unclear whether such multiple over-expression imposes an additive fitness cost in the vectors. Here, we showed that two highly over-expressed P450 genes (CYP6P9a and CYP6P9b) combine to impose additive fitness costs in pyrethroid-resistant Anopheles funestus. Genotyping of the CYP6P9b resistance allele in hybrid mosquitoes from a pyrethroid-resistant FUMOZ-R and the susceptible FANG strains revealed that this gene imposes a fitness cost in resistant mosquitoes similar to CYP6P9a. Homozygote susceptible CYP6P9b_S (SS) significantly lay more eggs than the resistant (OR = 2.2, P = 0.04) and with greater hatching rate (p < 0.04). Homozygote resistant larvae CYP6P9b_R (RR) developed significantly slower than homozygote susceptible from L1-L4 (χ2 = 7.2; P = 0.007) with a late pupation observed for RR compared to both heterozygotes and homozygotes susceptible (χ2 = 11.17; P = 0.0008). No difference was observed between genotypes for adult longevity with no change in allele frequency and gene expression across the lifespan. Furthermore, we established that CYP6P9b combines with CYP6P9a to additively exacerbate the fitness cost of pyrethroid resistance with a greater reduction in fecundity/fertility and increased developmental time of double homozygote resistant mosquitoes. Moreover, an increased proportion of double homozygote susceptible individuals was noted over 10 generations in the insecticide-free environment (χ2 = 6.3; P = 0.01) suggesting a reversal to susceptibility in the absence of selection. Such greater fitness cost imposed by multiple P450 genes shows that resistance management strategy based on rotation could help slow the spread of resistance.


Asunto(s)
Anopheles , Insecticidas , Malaria , Piretrinas , Animales , Anopheles/genética , Sistema Enzimático del Citocromo P-450/genética , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Malaria/genética , Mosquitos Vectores/genética , Piretrinas/toxicidad
10.
Mol Ecol ; 29(22): 4395-4411, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32974960

RESUMEN

Elucidating the complex evolutionary armory that mosquitoes deploy against insecticides is crucial to maintain the effectiveness of insecticide-based interventions. Here, we deciphered the role of a 6.5-kb structural variation (SV) in driving cytochrome P450-mediated pyrethroid resistance in the malaria vector, Anopheles funestus. Whole-genome pooled sequencing detected an intergenic 6.5-kb SV between duplicated CYP6P9a/b P450s in pyrethroid-resistant mosquitoes through a translocation event. Promoter analysis revealed a 17.5-fold higher activity (p < .0001) for the SV- carrying fragment than the SV- free one. Quantitative real-time PCR expression profiling of CYP6P9a/b for each SV genotype supported its role as an enhancer because SV+/SV+ homozygote mosquitoes had a significantly greater expression for both genes than heterozygotes SV+/SV- (1.7- to 2-fold) and homozygotes SV-/SV- (4-to 5-fold). Designing a PCR assay revealed a strong association between this SV and pyrethroid resistance (SV+/SV+ vs. SV-/SV-; odds ratio [OR] = 2,079.4, p < .001). The 6.5-kb SV is present at high frequency in southern Africa (80%-100%) but absent in East/Central/West Africa. Experimental hut trials revealed that homozygote SV mosquitoes had a significantly greater chance to survive exposure to pyrethroid-treated nets (OR 27.7; p < .0001) and to blood feed than susceptible mosquitoes. Furthermore, mosquitoes homozygote-resistant at the three loci (SV+/CYP6P9a_R/CYP6P9b_R) exhibited a higher resistance level, leading to a far superior ability to survive exposure to nets than those homozygotes susceptible at the three loci, revealing a strong additive effect. This study highlights the important role of structural variations in the development of insecticide resistance in malaria vectors and their detrimental impact on the effectiveness of pyrethroid-based nets.


Asunto(s)
Anopheles , Insecticidas , Malaria , Piretrinas , África Oriental , África Austral , África Occidental , Animales , Anopheles/genética , Sistema Enzimático del Citocromo P-450/genética , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Malaria/prevención & control , Malaria/transmisión , Mosquitos Vectores/genética
11.
Heredity (Edinb) ; 124(5): 621-632, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32157181

RESUMEN

Metabolic resistance threatens the sustainability of pyrethroid-based malaria control interventions. Elucidating the fitness cost and potential reversal of metabolic resistance is crucial to design suitable resistance management strategies. Here, we deciphered the fitness cost associated with the CYP6P9a (P450-mediated metabolic resistance) in the major African malaria vector Anopheles funestus. Reciprocal crosses were performed between a pyrethroid susceptible (FANG) and resistant (FUMOZ-R) laboratory strains and the hybrid strains showed intermediate resistance. Genotyping the CYP6P9a-R resistance allele in oviposited females revealed that CYP6P9a negatively impacts the fecundity as homozygote susceptible mosquitoes (CYP6P9a-SS) lay more eggs than heterozygote (OR = 2.04: P = 0.01) and homozygote resistant mosquitoes. CYP6P9a also imposes a significant fitness cost on the larval development as homozygote resistant larvae (CYP6P9a-RR) developed significantly slower than heterozygote and homozygote susceptible mosquitoes (χ2 = 11.2; P = 0.0008). This fitness cost was further supported by the late pupation of homozygote resistant than susceptible mosquitoes (OR = 2.50; P < 0.01). However, CYP6P9a does not impact the longevity as no difference was observed in the life span of mosquitoes with different genotypes (χ2 = 1.6; P = 0.9). In this hybrid strain, a significant decrease of the resistant CYP6P9a-RR genotype was observed after ten generations (χ2 = 6.6; P = 0.01) suggesting a reversal of P450-based resistance in the absence of selection. This study shows that the P450-mediated metabolic resistance imposes a high fitness cost in malaria vectors supporting that a resistance management strategy based on rotation could help mitigate the impact of such resistance.


Asunto(s)
Anopheles , Sistema Enzimático del Citocromo P-450/genética , Aptitud Genética , Resistencia a los Insecticidas/genética , Insecticidas , Piretrinas , Alelos , Animales , Anopheles/enzimología , Anopheles/genética , Femenino , Fertilidad , Genotipo , Mosquitos Vectores/enzimología , Mosquitos Vectores/genética
13.
J Infect Dis ; 220(3): 467-475, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-30923819

RESUMEN

BACKGROUND: Insecticide resistance poses a serious threat to insecticide-based interventions in Africa. There is a fear that resistance escalation could jeopardize malaria control efforts. Monitoring of cases of aggravation of resistance intensity and its impact on the efficacy of control tools is crucial to predict consequences of resistance. METHODS: The resistance levels of an Anopheles funestus population from Palmeira, southern Mozambique, were characterized and their impact on the efficacy of various insecticide-treated nets established. RESULTS: A dramatic loss of efficacy of all long-lasting insecticidal nets (LLINs), including piperonyl butoxide (PBO)-based nets (Olyset Plus), was observed. This An. funestus population consistently (2016, 2017, and 2018) exhibited a high degree of pyrethroid resistance. Molecular analyses revealed that this resistance escalation was associated with a massive overexpression of the duplicated cytochrome P450 genes CYP6P9a and CYP6P9b, and also the fixation of the resistance CYP6P9a_R allele in this population in 2016 (100%) in contrast to 2002 (5%). However, the low recovery of susceptibility after PBO synergist assay suggests that other resistance mechanisms could be involved. CONCLUSIONS: The loss of efficacy of pyrethroid-based LLINs with and without PBO is a concern for the effectiveness of insecticide-based interventions, and action should be taken to prevent the spread of such super-resistance.


Asunto(s)
Anopheles/efectos de los fármacos , Resistencia a los Insecticidas/efectos de los fármacos , Insecticidas/farmacología , Malaria/tratamiento farmacológico , Mosquitos Vectores/efectos de los fármacos , Butóxido de Piperonilo/farmacología , Piretrinas/farmacología , África , Alelos , Animales , Sistema Enzimático del Citocromo P-450/metabolismo , Femenino , Humanos , Mosquiteros Tratados con Insecticida/parasitología , Malaria/parasitología , Control de Mosquitos/métodos , Mozambique
14.
Malar J ; 18(1): 29, 2019 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-30696441

RESUMEN

BACKGROUND: Anopheles funestus mosquitoes currently contribute more than 85% of ongoing malaria transmission events in south-eastern Tanzania, even though they occur in lower densities than other vectors, such as Anopheles arabiensis. Unfortunately, the species ecology is minimally understood, partly because of difficulties in laboratory colonization. This study describes the first observations of An. funestus swarms in Tanzania, possibly heralding new opportunities for control. METHOD: Using systematic searches by community-based volunteers and expert entomologists, An. funestus swarms were identified in two villages in Ulanga and Kilombero districts in south-eastern Tanzania, starting June 2018. Swarms were characterized by size, height, start- and end-times, presence of copulation and associated environmental features. Samples of male mosquitoes from the swarms were examined for sexual maturity by observing genitalia rotation, species identity using polymerase chain reaction and wing sizes. RESULTS: 581 An. funestus (98.1% males (n = 570) and 1.9% (n = 11) females) and 9 Anopheles gambiae sensu lato (s.l.) males were sampled using sweep nets from the 81 confirmed swarms in two villages (Ikwambi in Kilombero district and Tulizamoyo in Ulanga district). Six copulation events were observed in the swarms. Mean density (95% CL) of An. funestus caught/swarm/village/evening was 6.6 (5.9-7.2) in Tulizamoyo and 10.8 (5.8-15.8) in Ikwambi. 87.7% (n = 71) of the swarms were found in Tulizamoyo, while 12.3% (n = 10) were in Ikwambi. Mean height of swarms was 1.7 m (0.9-2.5 m), while mean duration was 12.9 (7.9-17.9) minutes. The PCR analysis confirmed that 100% of all An. funestus s.l. samples processed were An. funestus sensu stricto. Mean wing length of An. funestus males was 2.47 mm (2.0-2.8 mm), but there was no difference between swarming males and indoor-resting males. Most swarms (95.0%) occurred above bare ground, sometime on front lawns near human dwellings, and repeatedly in the same locations. CONCLUSION: This study has demonstrated occurrence of An. funestus swarms for the first time in Tanzania. Further investigations could identify new opportunities for improved control of this dominant malaria vector, possibly by targeting the swarms.


Asunto(s)
Anopheles/fisiología , Mosquitos Vectores/fisiología , Animales , Femenino , Masculino , Dinámica Poblacional , Conducta Social , Tanzanía
15.
Cell Rep ; 43(8): 114566, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39088320

RESUMEN

Novel insecticides were recently introduced to counter pyrethroid resistance threats in African malaria vectors. To prolong their effectiveness, potential cross-resistance from promiscuous pyrethroid metabolic resistance mechanisms must be elucidated. Here, we demonstrate that the duplicated P450s CYP6P9a/-b, proficient pyrethroid metabolizers, reduce neonicotinoid efficacy in Anopheles funestus while enhancing the potency of chlorfenapyr. Transgenic expression of CYP6P9a/-b in Drosophila confirmed that flies expressing both genes were significantly more resistant to neonicotinoids than controls, whereas the contrasting pattern was observed for chlorfenapyr. This result was also confirmed by RNAi knockdown experiments. In vitro expression of recombinant CYP6P9a and metabolism assays established that it significantly depletes both clothianidin and chlorfenapyr, with metabolism of chlorfenapyr producing the insecticidally active intermediate metabolite tralopyril. This study highlights the risk of cross-resistance between pyrethroid and neonicotinoid and reveals that chlorfenapyr-based control interventions such as Interceptor G2 could remain efficient against some P450-based resistant mosquitoes.


Asunto(s)
Anopheles , Sistema Enzimático del Citocromo P-450 , Guanidinas , Resistencia a los Insecticidas , Insecticidas , Malaria , Neonicotinoides , Piretrinas , Tiazoles , Animales , Tiazoles/farmacología , Guanidinas/farmacología , Resistencia a los Insecticidas/genética , Anopheles/efectos de los fármacos , Anopheles/genética , Piretrinas/farmacología , Piretrinas/metabolismo , Neonicotinoides/farmacología , Insecticidas/farmacología , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Especificidad por Sustrato , Mosquitos Vectores/efectos de los fármacos , Mosquitos Vectores/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética
16.
Sci Rep ; 13(1): 14711, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37679465

RESUMEN

Assessing patterns and evolution of insecticide resistance in malaria vectors is a prerequisite to design suitable control strategies. Here, we characterised resistance profile in Anopheles gambiae and Anopheles funestus in Kinshasa and assess the level of aggravation by comparing to previous 2015 estimates. Both species collected in July 2021 were highly resistant to pyrethroids at 1×, 5× and 10× concentrations (mortality < 90%) and remain fully susceptible to bendiocarb and pirimiphos methyl. Compared to 2015, Partial recovery of susceptibility was observed in A. gambiae after PBO synergist assays for both permethrin and α-cypermethrin and total recovery of susceptibility was observed for deltamethrin in 2021. In addition, the efficacy of most bednets decreased significantly in 2021. Genotyping of resistance markers revealed a near fixation of the L1014-Kdr mutation (98.3%) in A. gambiae in 2021. The frequency of the 119F-GSTe2 resistant significantly increased between 2015 and 2021 (19.6% vs 33.3%; P = 0.02) in A. funestus. Transcriptomic analysis also revealed a significant increased expression (P < 0.001) of key cytochrome P450s in A. funestus notably CYP6P9a. The escalation of pyrethroid resistance observed in Anopheles populations from Kinshasa coupled with increased frequency/expression level of resistance genes highlights an urgent need to implement tools to improve malaria vector control.


Asunto(s)
Anopheles , Malaria , Animales , Anopheles/genética , República Democrática del Congo , Malaria/prevención & control , Mosquitos Vectores/genética , Bioensayo
17.
Infect Dis Poverty ; 12(1): 81, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37641108

RESUMEN

BACKGROUND: The increasing reports of resistance to pyrethroid insecticides associated with reduced efficacy of pyrethroid-only interventions highlight the urgency of introducing new non-pyrethroid-only control tools. Here, we investigated the performance of piperonyl-butoxide (PBO)-pyrethroid [Permanet 3.0 (P3.0)] and dual active ingredients (AI) nets [Interceptor G2 (IG2): containing pyrethroids and chlorfenapyr and Royal Guard (RG): containing pyrethroids and pyriproxyfen] compared to pyrethroid-only net Royal Sentry (RS) against pyrethroid-resistant malaria vectors in Cameroon. METHODS: The efficacy of these tools was firstly evaluated on Anopheles gambiae s.l. and Anopheles funestus s.l. from Gounougou, Mibellon, Mangoum, Nkolondom, and Elende using cone/tunnel assays. In addition, experimental hut trials (EHT) were performed to evaluate the performance of unwashed and 20 times washed nets in semi-field conditions. Furthermore, pyrethroid-resistant markers were genotyped in dead vs alive, blood-fed vs unfed mosquitoes after exposure to the nets to evaluate the impact of these markers on net performance. The XLSTAT software was used to calculate the various entomological outcomes and the Chi-square test was used to compare the efficacy of various nets. The odds ratio and Fisher exact test were then used to establish the statistical significance of any association between insecticide resistance markers and bed net efficacy. RESULTS: Interceptor G2 was the most effective net against wild pyrethroid-resistant An. funestus followed by Permanet 3.0. In EHT, this net induced up to 87.8% mortality [95% confidence interval (CI): 83.5-92.1%) and 55.6% (95% CI: 48.5-62.7%) after 20 washes whilst unwashed pyrethroid-only net (Royal Sentry) killed just 18.2% (95% CI: 13.4-22.9%) of host-seeking An. funestus. The unwashed Permanet 3.0 killed up to 53.8% (95% CI: 44.3-63.4%) of field-resistant mosquitoes and 47.2% (95% CI: 37.7-56.7%) when washed 20 times, and the Royal Guard 13.2% (95% CI: 9.0-17.3%) for unwashed net and 8.5% (95% CI: 5.7-11.4%) for the 20 washed net. Interceptor G2, Permanet 3.0, and Royal Guard provided better personal protection (blood-feeding inhibition 66.2%, 77.8%, and 92.8%, respectively) compared to pyrethroid-only net Royal Sentry (8.4%). Interestingly, a negative association was found between kdrw and the chlorfenapyr-based net Interceptor G2 (χ2 = 138; P < 0.0001) with homozygote-resistant mosquitoes predominantly found in the dead ones. CONCLUSIONS: The high mortality recorded with Interceptor G2 against pyrethroid-resistant malaria vectors in this study provides first semi-field evidence of high efficacy against these major malaria vectors in Cameroon encouraging the implementation of this novel net for malaria control in the country. However, the performance of this net should be established in other locations and on other major malaria vectors before implementation at a large scale.


Asunto(s)
Anopheles , Malaria , Animales , Camerún , Malaria/prevención & control , Mosquitos Vectores
18.
Trop Med Infect Dis ; 8(5)2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37235292

RESUMEN

Evaluating the susceptibility of malaria vectors to the new WHO-recommended products is a key step before large-scale deployment. We mapped the susceptibility profile of Anopheles funestus to neonicotinoids across Africa and established the diagnostic doses of acetamiprid and imidacloprid with acetone + MERO as solvent. Indoor resting An. funestus were collected in 2021 in Cameroon, Malawi, Ghana and Uganda. Susceptibility to clothianidin, imidacloprid and acetamiprid was evaluated using CDC bottle assays and offsprings of the field-caught adults. The L119F-GSTe2 marker was genotyped to assess the potential cross-resistance between clothianidin and this DDT/pyrethroid-resistant marker. Mosquitoes were susceptible to the three neonicotinoids diluted in acetone + MERO, whereas low mortality was noticed with ethanol or acetone alone. The doses of 6 µg/mL and 4 µg/mL were established as diagnostic concentrations of imidacloprid and acetamiprid, respectively, with acetone + MERO. Pre-exposure to synergists significantly restored the susceptibility to clothianidin. A positive correlation was observed between L119F-GSTe2 mutation and clothianidin resistance with the homozygote resistant mosquitoes being more able to survive than heterozygote or susceptible. This study revealed that An. funestus populations across Africa are susceptible to neonicotinoids, and as such, this insecticide class could be effectively implemented to control this species using IRS. However, potential cross-resistance conferred by GSTe2 calls for regular resistance monitoring in the field.

19.
Microorganisms ; 11(3)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36985217

RESUMEN

Microbiome composition has been associated with insecticide resistance in malaria vectors. However, the contribution of major symbionts to the increasingly reported resistance escalation remains unclear. This study explores the possible association of a specific endosymbiont, Asaia spp., with elevated levels of pyrethroid resistance driven by cytochrome P450s enzymes and voltage-gated sodium channel mutations in Anopheles funestus and Anopheles gambiae. Molecular assays were used to detect the symbiont and resistance markers (CYP6P9a/b, 6.5 kb, L1014F, and N1575Y). Overall, genotyping of key mutations revealed an association with the resistance phenotype. The prevalence of Asaia spp. in the FUMOZ_X_FANG strain was associated with the resistance phenotype at a 5X dose of deltamethrin (OR = 25.7; p = 0.002). Mosquitoes with the resistant allele for the markers tested were significantly more infected with Asaia compared to those possessing the susceptible allele. Furthermore, the abundance correlated with the resistance phenotype at 1X concentration of deltamethrin (p = 0.02, Mann-Whitney test). However, for the MANGOUM_X_KISUMU strain, findings rather revealed an association between Asaia load and the susceptible phenotype (p = 0.04, Mann-Whitney test), demonstrating a negative link between the symbiont and permethrin resistance. These bacteria should be further investigated to establish its interactions with other resistance mechanisms and cross-resistance with other insecticide classes.

20.
Sci Rep ; 13(1): 2363, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36759650

RESUMEN

New insecticides have recently been produced to help control pyrethroid-resistant malaria vectors including the pyrrole, chlorfenapyr. Monitoring the susceptibility of mosquito populations against this new product and potential cross-resistance with current insecticides is vital for better resistance management. In this study, we assessed the resistance status of the major malaria vectors Anopheles gambiae and Anopheles funestus to chlorfenapyr across Africa and explored potential cross-resistance with known pyrethroid resistance markers. Efficacy of chlorfenapyr 100 µg/ml against An. gambiae and An. funestus from five Cameroonian locations, the Democratic Republic of Congo, Ghana, Uganda, and Malawi was assessed using CDC bottle assays. Synergist assays were performed with PBO (4%), DEM (8%) and DEF (0.25%) and several pyrethroid-resistant markers were genotyped in both species to assess potential cross-resistance between pyrethroids and chlorfenapyr. Resistance to chlorfenapyr was detected in An. gambiae populations from DRC (Kinshasa) (mortality rate: 64.3 ± 7.1%) Ghana (Obuasi) (65.9 ± 7.4%), Cameroon (Mangoum; 75.2 ± 7.7% and Nkolondom; 86.1 ± 7.4). In contrast, all An. funestus populations were fully susceptible. A negative association was observed between the L1014F-kdr mutation and chlorfenapyr resistance with a greater frequency of homozygote resistant mosquitoes among the dead mosquitoes after exposure compared to alive (OR 0.5; P = 0.02) whereas no association was found between GSTe2 (I114T in An. gambiae; L119F in An. funestus) and resistance to chlorfenapyr. A significant increase of mortality to chlorfenapyr 10 µg/ml was observed in An. funestus after to PBO, DEM and DEF whereas a trend for a decreased mortality was observed in An. gambiae after PBO pre-exposure. This study reveals a greater risk of chlorfenapyr resistance in An. gambiae populations than in An. funestus. However, the higher susceptibility in kdr-resistant mosquitoes points to higher efficacy of chlorfenapyr against the widespread kdr-based pyrethroid resistance.


Asunto(s)
Anopheles , Insecticidas , Malaria , Piretrinas , Animales , Insecticidas/farmacología , Anopheles/genética , Resistencia a los Insecticidas/genética , Malaria/prevención & control , Mosquitos Vectores/genética , República Democrática del Congo , Piretrinas/farmacología , Control de Mosquitos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA