RESUMEN
6-mercaptopurine (6-MP) is the mainstay in pediatric acute lymphoblastic leukemia (ALL) maintenance treatment. Variants in genes coding for thiopurine S-methyl transferase (TPMT) and inosine triphosphate pyrophosphatase (ITPA) are known to influence 6-MP metabolism. We determined TPMT and ITPA genotype and enzyme activity and the mean 6-MP doses during maintenance treatment in 40 children treated for ALL according to the Dutch Childhood Oncology Group (DCOG)-ALL11 protocol in the Radboudumc Amalia Children's Hospital, Nijmegen, The Netherlands. Patients with genetic variants in TPMT (N=3) had significantly lower TPMT enzyme activity (mean 0.46 vs. 0.72 µmol/mmol hemoglobin/h, P=0.005). Although the difference was not statistically significant, they were treated with lower mean 6-MP doses (28.1 mg/m [SD 25.5 mg/m] vs. 41.3 mg/m [SD 17.2 mg/m], P=0.375). In patients with genetic ITPA variants (N=21), ITPA enzyme activity was significantly lowered (mean 3.67 vs. 6.84 mmol/mmol hemoglobin/h, P<0.0005). The mean 6-MP doses did not differ between patients with and without variants in ITPA (40.0 mg/m [SD 20.3 mg/m] vs. 40.6 mg/m [SD 14.9 mg/m], P=0.663). The TPMT genotype, but not the ITPA genotype, should be considered as part of standard evaluation before starting ALL maintenance treatment.
Asunto(s)
Antimetabolitos Antineoplásicos/administración & dosificación , Mercaptopurina/administración & dosificación , Metiltransferasas/genética , Polimorfismo Genético , Medicina de Precisión , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Pirofosfatasas/genética , Biomarcadores de Tumor/genética , Niño , Etnicidad , Femenino , Estudios de Seguimiento , Genotipo , Humanos , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Pronóstico , Estudios RetrospectivosRESUMEN
OBJECTIVE: Irreversible hearing loss is a frequent side effect of the chemotherapeutic agent cisplatin and shows considerable interpatient variability. The variant rs1872328 in the ACYP2 gene was recently identified as a risk factor for the development of cisplatin-induced ototoxicity in children with brain tumors. We aimed to replicate this finding in patients with osteosarcoma. METHODS: An independent cohort of 156 patients was genotyped for the rs1872328 variant and evaluated for the presence of cisplatin-induced ototoxicity. RESULTS: A significant association was observed between carriership of the A allele and cisplatin-induced ototoxicity after the end of treatment (P=0.027). CONCLUSION: This is the first study replicating the association of ACYP2 variant rs1872328 with cisplatin-induced ototoxicity in patients with osteosarcoma who did not receive potentially ototoxic cranial irradiation. Hence, the ACYP2 variant should be considered a predictive pharmacogenetic marker for hearing loss, which may be used to guide therapies for patients treated with cisplatin.
Asunto(s)
Ácido Anhídrido Hidrolasas/genética , Antineoplásicos/efectos adversos , Neoplasias Óseas/tratamiento farmacológico , Cisplatino/efectos adversos , Pérdida Auditiva/inducido químicamente , Osteosarcoma/tratamiento farmacológico , Polimorfismo de Nucleótido Simple , Adolescente , Adulto , Antineoplásicos/uso terapéutico , Neoplasias Óseas/genética , Niño , Cisplatino/uso terapéutico , Femenino , Pérdida Auditiva/genética , Humanos , Masculino , Osteosarcoma/genética , Adulto Joven , AcilfosfatasaRESUMEN
In osteosarcoma, large variation is observed in the efficacy and toxicity of chemotherapeutic drugs among similarly treated patients. Treatment optimization using predictive factors or algorithms is of importance, because there has been a lack of improvement of treatment outcome and survival for decades. The outcome of cancer treatment is influenced by the genome, thus studying genetic variants involved in the efficacy and toxicity of the chemotherapeutic drugs used in the treatment of osteosarcoma could be an opportunity to optimize current treatments and improve our understanding of the individual's drug response in osteosarcoma patients. This review discusses the current insights in the pharmacogenetics of the treatment response of osteosarcoma patients regarding efficacy and toxicity, and implications for future research and treatment.