Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell Mol Life Sci ; 75(20): 3781-3801, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29427073

RESUMEN

Platelet extracellular vesicles (PEVs) have emerged as potential mediators in intercellular communication. PEVs exhibit several activities with pathophysiological importance and may serve as diagnostic biomarkers. Here, imaging and analytical techniques were employed to unveil morphological pathways of the release, structure, composition, and surface properties of PEVs derived from human platelets (PLTs) activated with the thrombin receptor activating peptide (TRAP). Based on extensive electron microscopy analysis, we propose four morphological pathways for PEVs release from TRAP-activated PLTs: (1) plasma membrane budding, (2) extrusion of multivesicular α-granules and cytoplasmic vacuoles, (3) plasma membrane blistering and (4) "pearling" of PLT pseudopodia. The PLT extracellular vesiculome encompasses ectosomes, exosomes, free mitochondria, mitochondria-containing vesicles, "podiasomes" and PLT "ghosts". Interestingly, a flow cytometry showed a population of TOM20+LC3+ PEVs, likely products of platelet mitophagy. We found that lipidomic and proteomic profiles were different between the small PEV (S-PEVs; mean diameter 103 nm) and the large vesicle (L-PEVs; mean diameter 350 nm) fractions separated by differential centrifugation. In addition, the majority of PEVs released by activated PLTs was composed of S-PEVs which have markedly higher thrombin generation activity per unit of PEV surface area compared to L-PEVs, and contribute approximately 60% of the PLT vesiculome procoagulant potency.


Asunto(s)
Plaquetas/metabolismo , Micropartículas Derivadas de Células/metabolismo , Exosomas/metabolismo , Plaquetas/citología , Membrana Celular/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , Humanos , Lípidos/análisis , Proteínas de Transporte de Membrana/metabolismo , Microscopía Confocal , Microscopía Electrónica de Transmisión , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Mitofagia , Tamaño de la Partícula , Fragmentos de Péptidos/metabolismo , Proteómica , Receptores de Superficie Celular/metabolismo , Proteínas SNARE/metabolismo , Trombina/metabolismo
2.
Transfus Apher Sci ; 57(4): 449-457, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30049564

RESUMEN

Hemostasis is the physiological control of bleeding and is initiated by subendothelial exposure. Platelets form the primary vascular seal in three stages (localization, stimulation and aggregation), which are triggered by specific interactions between platelet surface receptors and constituents of the subendothelial matrix. As a secondary hemostatic plug, fibrin clot formation is initiated and feedback-amplified to advance the seal and stabilize platelet aggregates comprising the primary plug. Once blood leakage has been halted, the fibrinolytic pathway is initiated to dissolve the clot and restore normal blood flow. Constitutive and induced anticoagulant and antifibrinolytic pathways create a physiological balance between too much and too little clot production. Hemostatic imbalance is a major burden to global healthcare, resulting in thrombosis or hemorrhage.


Asunto(s)
Coagulación Sanguínea , Hemostasis/fisiología , Humanos
3.
Nanomedicine ; 10(5): 939-48, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24566271

RESUMEN

Carbon nanotubes (CNTs) exhibit a number of unique properties that make them attractive for various nanomedicine applications including their intravascular use. Therefore, the vascular toxicity of CNTs is a critical safety concern and methods of CNTs toxicity modulation are of great interest. Here, we report that carboxylated multiwalled carbon nanotubes (MWCNTs) induce a decrease in viability of cultured human umbilical vein endothelial cells (HUVECs) associated with the profound accumulation of autophagosomes. This autophagosome accumulation was mTOR kinase independent and was caused by blockade of the autophagic flux rather than by activation of autophagy. Stimulation of the autophagic flux with 1nmol/L bafilomycin A1 attenuated the cytotoxicity of carboxylated MWCNTs in HUVECs and was associated with the extracellular release of the nanomaterial in autophagic microvesicles. Thus, pharmacological stimulation of the autophagic flux may represent a new method of cytoprotection against toxic effects of nanomaterials. FROM THE CLINICAL EDITOR: This study investigates the mechanisms of toxicity of multiwalled carbon nanutubes on human endothelial cells, concluding that pharmacological stimulation of autophagic flux may represent a new method of cytoprotection against the toxic effects of these nanomaterials.


Asunto(s)
Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Nanoestructuras/toxicidad , Nanotubos de Carbono , Autofagia/fisiología , Exocitosis/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Macrólidos/farmacología
4.
Blood Adv ; 8(1): 207-218, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-37967384

RESUMEN

ABSTRACT: Platelets (PLTs) for transfusion can be stored for up to 7 days at room temperature (RT). The quality of apheresis PLTs decreases over storage time, which affects PLT hemostatic functions. Here, we characterized the membranous particles produced by PLT storage lesion (PSLPs), including degranulated PLTs, PLT ghosts, membrane fragments, and extracellular membrane vesicles (PEVs). The PSLPs generated in apheresis platelet units were analyzed on days 1, 3, 5, and 7 of RT storage. A differential centrifugation and a sucrose density gradient were used to separate PSLP populations. PSLPs were characterized using scanning and transmission electron microscopy (EM), flow cytometry (FC), and nanoparticle tracking analysis (NTA). PSLPs have different morphologies and a broad size distribution; FC and NTA showed that the concentration of small and large PSLPs increases with storage time. The density gradient separated 3 PSLP populations: (1) degranulated PLTs, PLT ghosts, and large PLT fragments; (2) PEVs originated from PLT activation and organelles released by necrotic PLTs; and (3) PEV ghosts. Most PSLPs expressed phosphatidyl serine and induced thrombin generation in the plasma. PSLPs contained extracellular mitochondria and some had the autophagosome marker LC3. PSLPs encompass degranulated PLTs, PLT ghosts, large PLT fragments, large and dense PEVs, and low-density PEV ghosts. The activation-related PSLPs are released, particularly during early stage of storage (days 1-3), and the release of apoptosis- and necrosis-related PSLPs prevails after that. No elevation of LC3- and TOM20-positive PSLPs indicates that the increase of extracellular mitochondria during later-stage storage is not associated with PLT mitophagy.


Asunto(s)
Eliminación de Componentes Sanguíneos , Vesículas Extracelulares , Plaquetas , Trombina , Citometría de Flujo
5.
J Extracell Vesicles ; 5: 30422, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27151397

RESUMEN

BACKGROUND: Freezing is promising for extended platelet (PLT) storage for transfusion. 6% DMSO cryopreserved PLTs (CPPs) are currently in clinical development. CPPs contain significant amount of platelet membrane vesicles (PMVs). PLT-membrane changes and PMV release in CPP are poorly understood, and haemostatic effects of CPP PMVs are not fully elucidated. This study aims to investigate PLT-membrane alterations in CPPs and provide comprehensive characterization of CPP PMVs, and their contribution to procoagulant activity (PCA) of CPPs. METHODS: CPPs and corresponding liquid-stored PLTs (LSPs) were characterized by flow cytometry (FC), fluorescence polarization (FP), nanoparticle tracking analysis (NTA), electron microscopy (SEM, TEM), atomic force microscopy (AFM) and thrombin-generation (TG) test. RESULTS: SEM and TEM revealed disintegration and vesiculation of the PLT-plasma membrane and loss of intracellular organization in 60% PLTs in CPPs. FP demonstrated that 6% DMSO alone and with freezing-thawing caused marked increase in PLT-membrane fluidity. The FC counts of annexin V-binding PMVs and CD41a(+) PMVs were 68- and 56-folds higher, respectively, in CPPs than in LSPs. The AFM and NTA size distribution of PMVs in CPPs indicated a peak diameter of 100 nm, corresponding to exosome-size vesicles. TG-based PCA of CPPs was 2- and 9-folds higher per PLT and per volume, respectively, compared to LSPs. Differential centrifugation showed that CPP supernatant contributed 26% to CPP TG-PCA, mostly by the exosome-size PMVs and their TG-PCA was phosphatidylserine dependent. CONCLUSIONS: Major portion of CPPs does not show activation phenotype but exhibits grape-like membrane disintegration with significant increase of membrane fluidity induced by 6% DMSO alone and further aggravated by freezing-thawing process. DMSO cryopreservation of PLTs is associated with the release of PMVs and marked increase of TG-PCA, as compared to LSPs. Exosome-size PMVs have significant contribution to PCA of CPPs.

6.
Biomaterials ; 35(24): 6182-94, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24831972

RESUMEN

Carbon nanotubes (CNT) are one of the most promising nanomaterials for use in medicine. The blood biocompatibility of CNT is a critical safety issue. In the bloodstream, proteins bind to CNT through non-covalent interactions to form a protein corona, thereby largely defining the biological properties of the CNT. Here, we characterize the interactions of carboxylated-multiwalled carbon nanotubes (CNTCOOH) with common human proteins and investigate the effect of the different protein coronas on the interaction of CNTCOOH with human blood platelets (PLT). Molecular modeling and different photophysical techniques were employed to characterize the binding of albumin (HSA), fibrinogen (FBG), γ-globulins (IgG) and histone H1 (H1) on CNTCOOH. We found that the identity of protein forming the corona greatly affects the outcome of CNTCOOH's interaction with blood PLT. Bare CNTCOOH-induced PLT aggregation and the release of platelet membrane microparticles (PMP). HSA corona attenuated the PLT aggregating activity of CNTCOOH, while FBG caused the agglomeration of CNTCOOH nanomaterial, thereby diminishing the effect of CNTCOOH on PLT. In contrast, the IgG corona caused PLT fragmentation, and the H1 corona induced a strong PLT aggregation, thus potentiating the release of PMP.


Asunto(s)
Plaquetas/metabolismo , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Nanotubos de Carbono/química , Animales , Plaquetas/ultraestructura , Bovinos , Dicroismo Circular , Humanos , L-Lactato Deshidrogenasa/metabolismo , Modelos Moleculares , Nanotubos de Carbono/ultraestructura , Activación Plaquetaria , Unión Proteica , Proteoma/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA