Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Breast Cancer Res ; 22(1): 135, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33267867

RESUMEN

BACKGROUND: The lack of specificity and high degree of false positive and false negative rates when using mammographic screening for detecting early-stage breast cancer is a critical issue. Blood-based molecular assays that could be used in adjunct with mammography for increased specificity and sensitivity could have profound clinical impact. Our objective was to discover and independently verify a panel of candidate blood-based biomarkers that could identify the earliest stages of breast cancer and complement current mammographic screening approaches. METHODS: We used affinity hydrogel nanoparticles coupled with LC-MS/MS analysis to enrich and analyze low-abundance proteins in serum samples from 20 patients with invasive ductal carcinoma (IDC) breast cancer and 20 female control individuals with positive mammograms and benign pathology at biopsy. We compared these results to those obtained from five cohorts of individuals diagnosed with cancer in organs other than breast (ovarian, lung, prostate, and colon cancer, as well as melanoma) to establish IDC-specific protein signatures. Twenty-four IDC candidate biomarkers were then verified by multiple reaction monitoring (LC-MRM) in an independent validation cohort of 60 serum samples specifically including earliest-stage breast cancer and benign controls (19 early-stage (T1a) IDC and 41 controls). RESULTS: In our discovery set, 56 proteins were increased in the serum samples from IDC patients, and 32 of these proteins were specific to IDC. Verification of a subset of these proteins in an independent cohort of early-stage T1a breast cancer yielded a panel of 4 proteins, ITGA2B (integrin subunit alpha IIb), FLNA (Filamin A), RAP1A (Ras-associated protein-1A), and TLN-1 (Talin-1), which classified breast cancer patients with 100% sensitivity and 85% specificity (AUC of 0.93). CONCLUSIONS: Using a nanoparticle-based protein enrichment technology, we identified and verified a highly specific and sensitive protein signature indicative of early-stage breast cancer with no false positives when assessing benign and inflammatory controls. These markers have been previously reported in cell-ECM interaction and tumor microenvironment biology. Further studies with larger cohorts are needed to evaluate whether this biomarker panel improves the positive predictive value of mammography for breast cancer detection.


Asunto(s)
Biomarcadores de Tumor/sangre , Neoplasias de la Mama/diagnóstico , Carcinoma Ductal de Mama/diagnóstico , Detección Precoz del Cáncer/métodos , Proteínas de la Matriz Extracelular/sangre , Adulto , Anciano , Biopsia , Mama/diagnóstico por imagen , Mama/patología , Neoplasias de la Mama/sangre , Carcinoma Ductal de Mama/sangre , Carcinoma Ductal de Mama/patología , Estudios de Casos y Controles , Estudios de Cohortes , Proteínas de la Matriz Extracelular/química , Femenino , Humanos , Masculino , Mamografía , Persona de Mediana Edad , Nanopartículas/química , Proteómica/métodos
2.
J Proteome Res ; 14(9): 3441-51, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26155874

RESUMEN

Approximately 18% of all human genes purported to encode proteins have not been directly evidenced at the protein level, according to the validation criteria established by neXtProt, and are considered to be "missing" proteins. One of the goals of the Chromosome-Centric Human Proteome Project (C-HPP) is to identify as many of these missing proteins as possible in human samples using mass spectrometry-based methods. To further this goal, a consortium of C-HPP teams (chromosomes 5, 10, 16, and 19) has joined forces to devise new strategies to identify missing proteins by use of a cell-free in vitro transcription/translation system (IVTT). The proposed strategy employs LC-MS/MS data-dependent acquisition (DDA) and targeted selective reaction monitoring (SRM) methods to scrutinize low-complexity samples derived from IVTT. The optimized assays are then applied to identify missing proteins in human cells and tissues. We describe the approach and show proof-of-concept results for development of LC-SRM assays for identification of 18 missing proteins. We believe that the IVTT system, when coupled with downstream mass spectrometric identification, can be applied to identify proteins that have eluded more traditional methods of detection.


Asunto(s)
Biosíntesis de Proteínas , Proteoma , Transcripción Genética , Cromatografía Liquida , Técnicas In Vitro , Espectrometría de Masas en Tándem
3.
Mol Cell Proteomics ; 9(2): 242-54, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19858499

RESUMEN

Optimal performance of LC-MS/MS platforms is critical to generating high quality proteomics data. Although individual laboratories have developed quality control samples, there is no widely available performance standard of biological complexity (and associated reference data sets) for benchmarking of platform performance for analysis of complex biological proteomes across different laboratories in the community. Individual preparations of the yeast Saccharomyces cerevisiae proteome have been used extensively by laboratories in the proteomics community to characterize LC-MS platform performance. The yeast proteome is uniquely attractive as a performance standard because it is the most extensively characterized complex biological proteome and the only one associated with several large scale studies estimating the abundance of all detectable proteins. In this study, we describe a standard operating protocol for large scale production of the yeast performance standard and offer aliquots to the community through the National Institute of Standards and Technology where the yeast proteome is under development as a certified reference material to meet the long term needs of the community. Using a series of metrics that characterize LC-MS performance, we provide a reference data set demonstrating typical performance of commonly used ion trap instrument platforms in expert laboratories; the results provide a basis for laboratories to benchmark their own performance, to improve upon current methods, and to evaluate new technologies. Additionally, we demonstrate how the yeast reference, spiked with human proteins, can be used to benchmark the power of proteomics platforms for detection of differentially expressed proteins at different levels of concentration in a complex matrix, thereby providing a metric to evaluate and minimize pre-analytical and analytical variation in comparative proteomics experiments.


Asunto(s)
Cromatografía Liquida/métodos , Cromatografía Liquida/normas , Técnicas de Laboratorio Clínico/normas , Espectrometría de Masas/métodos , Espectrometría de Masas/normas , Proteínas de Saccharomyces cerevisiae/análisis , Saccharomyces cerevisiae/metabolismo , Biomarcadores/metabolismo , Humanos , Proteómica/normas
4.
Mol Cell Proteomics ; 9(2): 225-41, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19837981

RESUMEN

A major unmet need in LC-MS/MS-based proteomics analyses is a set of tools for quantitative assessment of system performance and evaluation of technical variability. Here we describe 46 system performance metrics for monitoring chromatographic performance, electrospray source stability, MS1 and MS2 signals, dynamic sampling of ions for MS/MS, and peptide identification. Applied to data sets from replicate LC-MS/MS analyses, these metrics displayed consistent, reasonable responses to controlled perturbations. The metrics typically displayed variations less than 10% and thus can reveal even subtle differences in performance of system components. Analyses of data from interlaboratory studies conducted under a common standard operating procedure identified outlier data and provided clues to specific causes. Moreover, interlaboratory variation reflected by the metrics indicates which system components vary the most between laboratories. Application of these metrics enables rational, quantitative quality assessment for proteomics and other LC-MS/MS analytical applications.


Asunto(s)
Cromatografía Liquida/métodos , Cromatografía Liquida/normas , Proteómica/métodos , Proteómica/normas , Espectrometría de Masas en Tándem/métodos , Espectrometría de Masas en Tándem/normas , Animales , Pollos , Proteínas del Huevo/análisis , Laboratorios , Proteoma/análisis , Reproducibilidad de los Resultados , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/análisis , Programas Informáticos
5.
J Proteome Res ; 9(2): 761-76, 2010 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-19921851

RESUMEN

The complexity of proteomic instrumentation for LC-MS/MS introduces many possible sources of variability. Data-dependent sampling of peptides constitutes a stochastic element at the heart of discovery proteomics. Although this variation impacts the identification of peptides, proteomic identifications are far from completely random. In this study, we analyzed interlaboratory data sets from the NCI Clinical Proteomic Technology Assessment for Cancer to examine repeatability and reproducibility in peptide and protein identifications. Included data spanned 144 LC-MS/MS experiments on four Thermo LTQ and four Orbitrap instruments. Samples included yeast lysate, the NCI-20 defined dynamic range protein mix, and the Sigma UPS 1 defined equimolar protein mix. Some of our findings reinforced conventional wisdom, such as repeatability and reproducibility being higher for proteins than for peptides. Most lessons from the data, however, were more subtle. Orbitraps proved capable of higher repeatability and reproducibility, but aberrant performance occasionally erased these gains. Even the simplest protein digestions yielded more peptide ions than LC-MS/MS could identify during a single experiment. We observed that peptide lists from pairs of technical replicates overlapped by 35-60%, giving a range for peptide-level repeatability in these experiments. Sample complexity did not appear to affect peptide identification repeatability, even as numbers of identified spectra changed by an order of magnitude. Statistical analysis of protein spectral counts revealed greater stability across technical replicates for Orbitraps, making them superior to LTQ instruments for biomarker candidate discovery. The most repeatable peptides were those corresponding to conventional tryptic cleavage sites, those that produced intense MS signals, and those that resulted from proteins generating many distinct peptides. Reproducibility among different instruments of the same type lagged behind repeatability of technical replicates on a single instrument by several percent. These findings reinforce the importance of evaluating repeatability as a fundamental characteristic of analytical technologies.


Asunto(s)
Cromatografía Liquida/métodos , Proteoma , Espectrometría de Masas en Tándem/métodos , Reproducibilidad de los Resultados
6.
Brief Funct Genomic Proteomic ; 7(5): 329-39, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18579615

RESUMEN

Major technological advances have made proteomics an extremely active field for biomarker discovery and validation in recent years. These improvements have lead to an increased emphasis on larger scale, faster and more efficient methods for protein biomarker discoveries in human tissues, cells and biofluids. However, most current proteomic methodologies for biomarker discovery and validation are not highly automated and generally labour intensive and expensive. Improved automation as well as software programs capable of handling a large amount of data are essential in order to reduce the cost of discovery and increase the throughput. In this review, we will discuss and describe the label-free mass spectrometry-based protein quantification technologies and a case study utilizing one of these methods for biomarker discovery.


Asunto(s)
Espectrometría de Masas/métodos , Proteínas/análisis , Proteómica , Alquilación , Área Bajo la Curva , Cromatografía Líquida de Alta Presión , Oxidación-Reducción , Proteínas/aislamiento & purificación , Control de Calidad , Programas Informáticos
7.
PLoS One ; 4(2): e4430, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19221597

RESUMEN

BACKGROUND: Melanoma metastasis status is highly associated with the overall survival of patients; yet, little is known about proteomic changes during melanoma tumor progression. To better understand the changes in protein expression involved in melanoma progression and metastasis, and to identify potential biomarkers, we conducted a global quantitative proteomic analysis on archival metastatic and primary melanomas. METHODOLOGY AND FINDINGS: A total of 16 metastatic and 8 primary cutaneous melanomas were assessed. Proteins were extracted from laser captured microdissected formalin fixed paraffin-embedded archival tissues by liquefying tissue cells. These preparations were analyzed by a LC/MS-based label-free protein quantification method. More than 1500 proteins were identified in the tissue lysates with a peptide ID confidence level of >75%. This approach identified 120 significant changes in protein levels. These proteins were identified from multiple peptides with high confidence identification and were expressed at significantly different levels in metastases as compared with primary melanomas (q-Value<0.05). CONCLUSIONS AND SIGNIFICANCE: The differentially expressed proteins were classified by biological process or mapped into biological system networks, and several proteins were implicated by these analyses as cancer- or metastasis-related. These proteins represent potential biomarkers for tumor progression. The study successfully identified proteins that are differentially expressed in formalin fixed paraffin-embedded specimens of metastatic and primary melanoma.


Asunto(s)
Biomarcadores de Tumor/análisis , Melanoma , Metástasis de la Neoplasia , Proteínas de Neoplasias/análisis , Proteoma/análisis , Animales , Cromatografía Liquida/métodos , Bases de Datos de Proteínas , Humanos , Espectrometría de Masas/métodos , Melanoma/química , Melanoma/patología , Datos de Secuencia Molecular , Adhesión en Parafina
8.
Nat Biotechnol ; 27(7): 633-41, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19561596

RESUMEN

Verification of candidate biomarkers relies upon specific, quantitative assays optimized for selective detection of target proteins, and is increasingly viewed as a critical step in the discovery pipeline that bridges unbiased biomarker discovery to preclinical validation. Although individual laboratories have demonstrated that multiple reaction monitoring (MRM) coupled with isotope dilution mass spectrometry can quantify candidate protein biomarkers in plasma, reproducibility and transferability of these assays between laboratories have not been demonstrated. We describe a multilaboratory study to assess reproducibility, recovery, linear dynamic range and limits of detection and quantification of multiplexed, MRM-based assays, conducted by NCI-CPTAC. Using common materials and standardized protocols, we demonstrate that these assays can be highly reproducible within and across laboratories and instrument platforms, and are sensitive to low mug/ml protein concentrations in unfractionated plasma. We provide data and benchmarks against which individual laboratories can compare their performance and evaluate new technologies for biomarker verification in plasma.


Asunto(s)
Proteínas Sanguíneas/análisis , Espectrometría de Masas/métodos , Biomarcadores/sangre , Análisis Químico de la Sangre/métodos , Humanos , Modelos Lineales , Espectrometría de Masas/normas , Proteoma/análisis , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Evaluación de la Tecnología Biomédica
9.
Anal Biochem ; 369(1): 18-26, 2007 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-17692277

RESUMEN

Although significant progress has been made in protein quantification using mass spectrometry during recent years, absolute protein quantification in complex biological systems remains a challenging task in proteomics. The use of stable isotope-labeled standard peptide is the most commonly used strategy for absolute quantification, but it might not be suitable in all instances. Here we report an alternative strategy that employs a stable isotope-labeled intact protein as an internal standard to absolutely quantify the alcohol dehydrogenase (ADH) expression level in a human liver sample. In combination with a new targeted proteomics approach employing the method of multiple reaction monitoring (MRM), we precisely and quantitatively measured the absolute protein expression level of an ADH isoenzyme, ADH1C1, in human liver. Isotope-labeled protein standards are predicted to be particularly useful for measurement of highly homologous isoenzymes such as ADHs where multiple signature peptides can be examined by MRM in a single experiment.


Asunto(s)
Alcohol Deshidrogenasa/análisis , Hígado/enzimología , Proteómica/métodos , Alcohol Deshidrogenasa/metabolismo , Secuencia de Aminoácidos , Humanos , Isoenzimas/análisis , Isoenzimas/metabolismo , Marcaje Isotópico/métodos , Espectrometría de Masas , Datos de Secuencia Molecular , Péptidos/química , Péptidos/metabolismo
10.
Anal Chem ; 76(22): 6698-706, 2004 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-15538794

RESUMEN

A sample deposition device has been constructed and optimized for interfacing CEC and capillary LC columns to MALDI mass spectrometry. For CEC analysis, the device is composed of an inlet buffer reservoir and an outlet buffer reservoir connected to a matrix reservoir through a connection sleeve. The matrix reservoir is connected to a deposition capillary via another connection sleeve. CEC eluent is transported to the matrix reservoir via a capillary that is connected to the deposition capillary by the connection sleeve inside the matrix reservoir. This connection sleeve also acts as a mixing chamber, allowing the CEC eluent to be mixed with matrix prior to deposition. Complex glycan mixtures can be separated by CEC using hydrophilic-phase monolithic columns, with capillary eluent being deposited on a standard MALDI plate along with a suitable matrix solution. Thousands of discrete, highly homogeneous dots can be generated for a subsequent mass spectrometric analysis. With minor modifications, this device is also applicable to capillary LC of peptides using gradient elution. In this configuration, the outlet of the LC column is connected to a deposition capillary inside a matrix reservoir through a connection sleeve that allows mixing of the LC effluent with an appropriate matrix. The device has been evaluated with the tryptic digests of proteins.


Asunto(s)
Cromatografía Liquida/métodos , Cromatografía Capilar Electrocinética Micelar/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Polisacáridos/química , Ribonucleasas/química , Albúmina Sérica Bovina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA