Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Cell Physiol ; 236(9): 6136-6153, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33507558

RESUMEN

Epstein-Barr virus (EBV)-associated gastric cancer (EBVaGC) is regarded as the most prevalent malignant tumor triggered by EBV infection. In recent years, increasing attention has been considered to recognize more about the disease process's exact mechanisms. There is accumulating evidence that showing epigenetic modifications play critical roles in the EBVaGC pathogenesis. MicroRNAs (miRNAs), as critical epigenetic modulators, are single-strand short noncoding RNA (length ~ <200 bp), which regulate gene expression through binding to the 3'-untranslated region (3'-UTR) of target RNA transcripts and either degrade or repress their activities. In the latest research on EBV, it was found that this virus could encode miRNAs. Mechanistically, EBV-encoded miRNAs are involved in carcinogenesis and the progression of EBV-associated malignancies. Moreover, these miRNAs implicated in immune evasion, identification of pattern recognition receptors, regulation of lymphocyte activation and lethality, modulation of infected host cell antigen, maintain of EBV infection status, promotion of cell proliferation, invasion and migration, and reduction of apoptosis. As good news, not only has recent data demonstrated the crucial function of EBV-encoded miRNAs in the pathogenesis of EBVaGC, but it has also been revealed that aberrant expression of exosomal miRNAs in EBVaGC has made them biomarkers for detection of EBVaGC. Regarding these substantial characterizes, the critical role of EBV-encoded miRNAs has been a hot topic in research. In this review, we will focus on the multiple mechanisms involved in EBVaGC caused by EBV-encoded miRNAs and briefly discuss their potential application in the clinic as a diagnostic biomarker.


Asunto(s)
Herpesvirus Humano 4/genética , MicroARNs/metabolismo , Neoplasias Gástricas/virología , Animales , Apoptosis/genética , Exosomas/metabolismo , Humanos , Evasión Inmune , MicroARNs/genética
2.
J Cell Physiol ; 235(6): 5059-5071, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31951025

RESUMEN

Breast cancer is a major clinical challenge that affects a wide range of the female population and heavily burdens the health system. In the past few decades, attempts have been made to understand the etiology of breast cancer, possible environmental risk factors, and the genetic predispositions, pathogenesis, and molecular aberrations involved in the process. Studies have shown that breast cancer is a heterogeneous entity; each subtype has its specific set of aberrations in different cell signaling pathways, such as Notch, Wnt/ß-catenin, transforming growth factor-ß, and mitogen-activated protein kinase pathways. One novel group of molecules that have been shown to be inducted in the regulation of multiple cell signaling pathways is the long noncoding RNAs (lncRNAs). These molecules have important implications in the regulation of multiple signaling pathways by interacting with various genes, affecting the transcription process, and finally, playing roles in posttranslational control of these genes. There is growing evidence that lncRNAs are involved in the process of breast cancer formation by effecting the aforementioned signaling pathways, and that this involvement can have significant diagnostic and prognostic values in clinical contexts. The present review aims to elicit the significance of lncRNAs in the regulation of cell signaling pathways, and the resulting changes in cell survival, proliferation, and invasion, which are the hallmarks of breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , Proliferación Celular/genética , ARN Largo no Codificante/genética , Neoplasias de la Mama/patología , Movimiento Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Pronóstico
3.
Recent Pat Biotechnol ; 14(4): 312-324, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32990553

RESUMEN

BACKGROUND: Cholera triggered by Vibrio cholerae remains the main reason for morbidity and mortality all over the world. In addition, salmonellosis is regarded as an infectious disease that makes it essential for the identification and detection of Salmonella. With a beta-barrel structure consisting of eight non-parallel beta strands, OmpW family is widely distributed among gram-negative bacteria. Moreover, OmpW isolated from S. typhimurium and Vibrio cholerae can be used in vaccine design. METHODS: Topology prediction was determined. T-cell and B-cell epitopes were selected from exposed areas, and sequence conservancy was evaluated. The remaining loops and inaccessible residues were removed to prepare OmpW-1. High antigenicity peptides were detected to replace inappropriate residues to obtain OmpW-2. Physicochemical properties were assessed, and antigenicity, hydrophobicity, flexibility, and accessibility were compared to the native Omp-W structure. Low score areas were removed from the designed structure for preparing the OmpW-3. To construct OmpW-4, TTFrC was used as T-CD4+ cell-stimulating factor and CTB as adjuvant to the end of the C-terminal of this sequence, which can increase the antigenicity and sequence density. The sequences were re-analyzed to delete the unfavorable residues. Besides, the solubility of the mature OmpW and the designed structure were predicted while overexpressed in E. coli. RESULTS: The designed vaccine is a stable protein that has immune cells recognizing epitopes and is considered as an antigen. The construct can be overexpressed in an E. coli. CONCLUSION: The multi-epitope vaccine is a suitable stimulator for the immune system and would be a candidate for experimental research. Recent patents describe numerous inventions related to the clinical facets of vaccine peptide against human infectious disease.


Asunto(s)
Antígenos Bacterianos , Proteínas de la Membrana Bacteriana Externa , Vacunas Bacterianas , Salmonella , Vibrio cholerae , Antígenos Bacterianos/química , Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/inmunología , Cólera/microbiología , Biología Computacional , Simulación por Computador , Epítopos/química , Epítopos/inmunología , Humanos , Patentes como Asunto , Salmonella/química , Salmonella/inmunología , Infecciones por Salmonella/microbiología , Vacunas de Subunidad , Vibrio cholerae/química , Vibrio cholerae/inmunología
4.
Recent Pat Biotechnol ; 14(4): 269-282, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32838727

RESUMEN

BACKGROUND: Granulocyte colony-stimulating factor (G-CSF) expressed in engineered Escherichia coli (E. coli) as a recombinant protein is utilized as an adjunct to chemotherapy for improving neutropenia. Recombinant proteins overexpression may lead to the creation of inclusion bodies whose recovery is a tedious and costly process. To overcome the problem of inclusion bodies, secretory production might be used. To achieve a mature secretory protein product, suitable signal peptide (SP) selection is a vital step. OBJECTIVE: In the present study, we aimed at in silico evaluation of proper SPs for secretory production of recombinant G-CSF in E. coli. METHODS: Signal peptide website and UniProt were used to collect the SPs and G-CSF sequences. Then, SignalP were utilized in order to predict the SPs and location of their cleavage site. Physicochemical features and solubility were investigated by ProtParam and Protein-sol tools. Fusion proteins sub-cellular localization was predicted by ProtCompB. RESULTS: LPP, ELBP, TSH, HST3, ELBH, AIDA and PET were excluded according to SignalP. The highest aliphatic index belonged to OMPC, TORT and THIB and PPA. Also, the highest GRAVY belonged to OMPC, ELAP, TORT, BLAT, THIB, and PSPE. Furthermore, G-CSF fused with all SPs were predicted as soluble fusion proteins except three SPs. Finally, we found OMPT, OMPF, PHOE, LAMB, SAT, and OMPP can translocate G-CSF into extracellular space. CONCLUSION: Six SPs were suitable for translocating G-CSF into the extracellular media. Although growing data indicate that the bioinformatics approaches can improve the precision and accuracy of studies, further experimental investigations and recent patents explaining several inventions associated to the clinical aspects of SPs for secretory production of recombinant GCSF in E. coli are required for final validation.


Asunto(s)
Biología Computacional , Escherichia coli/genética , Factor Estimulante de Colonias de Granulocitos , Señales de Clasificación de Proteína/genética , Proteínas Recombinantes de Fusión , Simulación por Computador , Factor Estimulante de Colonias de Granulocitos/genética , Factor Estimulante de Colonias de Granulocitos/metabolismo , Patentes como Asunto , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA