RESUMEN
A central effort in HIV vaccine development is to generate protective broadly neutralizing antibodies, a process dependent on T follicular helper (Tfh) cells. The feasibility of using peripheral blood counterparts of lymph node Tfh cells to assess the immune response and the influence of viral and vaccine antigens on their helper functions remain obscure. We assessed circulating HIV-specific IL-21(+)CD4(+) T cells and showed transcriptional and phenotypic similarities to lymphoid Tfh cells, and hence representing peripheral Tfh (pTfh) cells. pTfh cells were functionally active and B cell helper quality differed depending on antigen specificity. Furthermore, we found higher frequency of pTfh cells in peripheral blood mononuclear cell specimens from the ALVAC+AIDSVAX (RV144) HIV vaccine trial associated with protective antibody responses compared to the non-protective DNA+Ad5 vaccine trial. Together, we identify IL-21(+)CD4(+) T cells as pTfh cells, implicating them as key populations in the generation of vaccine-evoked antibody responses.
Asunto(s)
Infecciones por VIH/inmunología , Interleucinas/inmunología , Subgrupos de Linfocitos T/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Separación Celular , Ensayo de Immunospot Ligado a Enzimas , Citometría de Flujo , VIH-1/inmunología , Humanos , Reacción en Cadena en Tiempo Real de la PolimerasaRESUMEN
The maturation process of high-affinity antibodies is a result of intricate interactions between B cells and follicular helper T (Tfh) cells occurring in lymphoid germinal centers. HIV infection induces significant chronic immune activation, phenotypic skewing, and inflammation driven by years of continuous viral replication. High levels of viremia as well as immune activation and dysfunction have been demonstrated to have a perturbing impact on the B cell memory compartment and contribute to B cell exhaustion. Counterintuitively, the factors associated with perturbation of the B cell compartment seem to be favorable for the generation of highly affinity-matured Env-specific antibodies in a minority of HIV-infected individuals. Thus, the impact of HIV antigenemia on B cells and Tfh cell interactions warrants further exploration. We therefore studied immunophenotypes of HIV-specific B cells in individuals with differing levels of viral control using HIV Env gp120 probes and characterized the functionality of matched T cells in peripheral blood. While CXCR5+ CD4+ T cells were significantly diminished in HIV progressors, we found that a small subset of gp120-specific interleukin-21 (IL-21)-secreting CXCR5+ CD4+ T cells were significantly associated with gp120-specific B cell frequencies. In contrast, neither bulk CXCR5+ CD4+ T cells nor other HIV antigen specificities were associated with gp120-specific B cell levels. HIV-specific B cells derived from elite controllers displayed greater amounts of gp120-specific B cells in the resting memory subset, whereas HIV-specific B cells in progressors accumulated in tissue-like and activated memory subsets. Furthermore, CXCR5+ CD4+ T cells from elite controllers showed a stronger ex vivo capacity to induce B cell maturation and immunoglobulin class switching than cells from HIV progressors.IMPORTANCE Dissecting the factors that are involved in B cell maturation and antibody development is important for HIV vaccine design. In this study, we found that HIV Env-specific CXCR5+ CD4+ T cells that secrete interleukin-21 are strongly associated with B cell memory phenotypes and function. Moreover, we found that the immune responses of HIV controllers showed intrinsically better helper activity than those of HIV progressors.
Asunto(s)
Linfocitos B/inmunología , Centro Germinal/inmunología , Proteína gp120 de Envoltorio del VIH/inmunología , Infecciones por VIH/inmunología , Sobrevivientes de VIH a Largo Plazo , Linfocitos T Colaboradores-Inductores/inmunología , Adulto , Linfocitos T CD4-Positivos/química , Linfocitos T CD4-Positivos/inmunología , Femenino , Humanos , Inmunofenotipificación , Interleucinas/metabolismo , Masculino , Persona de Mediana Edad , Receptores CXCR5/análisisRESUMEN
Inhibitory receptors have been extensively described for their importance in regulating immune responses in chronic infections and cancers. Blocking the function of inhibitory receptors such as PD-1, CTLA-4, 2B4, Tim-3, and LAG-3 has shown promise for augmenting CD8 T cell activity and boosting pathogen-specific immunity. However, the prevalence of inhibitory receptors on CD4 T cells and their relative influence on CD4 T cell functionality in chronic HIV infection remains poorly described. We therefore determined and compared inhibitory receptor expression patterns of 2B4, CTLA-4, LAG-3, PD-1, and Tim-3 on virus-specific CD4 and CD8 T cells in relation to their functional T cell profile. In chronic HIV infection, inhibitory receptor distribution differed markedly between cytokine-producing T cell subsets with, gamma interferon (IFN-γ)- and tumor necrosis factor alpha (TNF-α)-producing cells displaying the highest and lowest prevalence of inhibitory receptors, respectively. Blockade of inhibitory receptors differentially affected cytokine production by cells in response to staphylococcal enterotoxin B stimulation. CTLA-4 blockade increased IFN-γ and CD40L production, while PD-1 blockade strongly augmented IFN-γ, interleukin-2 (IL-2), and TNF-α production. In a Friend retrovirus infection model, CTLA-4 blockade in particular was able to improve control of viral replication. Together, these results show that inhibitory receptor distribution on HIV-specific CD4 T cells varies markedly with respect to the functional subset of CD4 T cells being analyzed. Furthermore, the differential effects of receptor blockade suggest novel methods of immune response modulation, which could be important in the context of HIV vaccination or therapeutic strategies.IMPORTANCE Inhibitory receptors are important for limiting damage by the immune system during acute infections. In chronic infections, however, their expression limits immune system responsiveness. Studies have shown that blocking inhibitory receptors augments CD8 T cell functionality in HIV infection, but their influence on CD4 T cells remains unclear. We assessed the expression of inhibitory receptors on HIV-specific CD4 T cells and their relationship with T cell functionality. We uncovered differences in inhibitory receptor expression depending on the CD4 T cell function. We also found differences in functionality of CD4 T cells following blocking of different inhibitory receptors, and we confirmed our results in a Friend virus retroviral model of infection in mice. Our results show that inhibitory receptor expression on CD4 T cells is linked to CD4 T cell functionality and could be sculpted by blockade of specific inhibitory receptors. These data reveal exciting possibilities for the development of novel treatments and immunotherapeutics.
Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Receptores Coestimuladores e Inhibidores de Linfocitos T/antagonistas & inhibidores , Receptores Coestimuladores e Inhibidores de Linfocitos T/genética , Expresión Génica , Infecciones por VIH/inmunología , Animales , Anticuerpos/administración & dosificación , Anticuerpos/farmacología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/virología , Antígeno CTLA-4/antagonistas & inhibidores , Antígeno CTLA-4/genética , Antígeno CTLA-4/inmunología , Receptores Coestimuladores e Inhibidores de Linfocitos T/efectos de los fármacos , Citocinas/biosíntesis , Citocinas/efectos de los fármacos , Enterotoxinas/farmacología , Virus de la Leucemia Murina de Friend/fisiología , Infecciones por VIH/virología , Humanos , Interferón gamma/biosíntesis , Ratones , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/inmunología , Infecciones por Retroviridae/inmunología , Factor de Necrosis Tumoral alfa/biosíntesisRESUMEN
UNLABELLED: Adenovirus vectors are widely used as vaccine candidates for a variety of pathogens, including HIV-1. To date, human and chimpanzee adenoviruses have been explored in detail as vaccine vectors. The phylogeny of human and chimpanzee adenoviruses is overlapping, and preexisting humoral and cellular immunity to both are exhibited in human populations worldwide. More distantly related adenoviruses may therefore offer advantages as vaccine vectors. Here we describe the primary isolation and vectorization of three novel adenoviruses from rhesus monkeys. The seroprevalence of these novel rhesus monkey adenovirus vectors was extremely low in sub-Saharan Africa human populations, and these vectors proved to have immunogenicity comparable to that of human and chimpanzee adenovirus vaccine vectors in mice. These rhesus monkey adenoviruses phylogenetically clustered with the poorly described adenovirus species G and robustly stimulated innate immune responses. These novel adenoviruses represent a new class of candidate vaccine vectors. IMPORTANCE: Although there have been substantial efforts in the development of vaccine vectors from human and chimpanzee adenoviruses, far less is known about rhesus monkey adenoviruses. In this report, we describe the isolation and vectorization of three novel rhesus monkey adenoviruses. These vectors exhibit virologic and immunologic characteristics that make them attractive as potential candidate vaccine vectors for both HIV-1 and other pathogens.
Asunto(s)
Adenoviridae/clasificación , Adenoviridae/aislamiento & purificación , Portadores de Fármacos/aislamiento & purificación , Vectores Genéticos/aislamiento & purificación , Adenoviridae/genética , Adenoviridae/inmunología , Infecciones por Adenoviridae/inmunología , Infecciones por Adenoviridae/veterinaria , Infecciones por Adenoviridae/virología , África del Sur del Sahara , Animales , Anticuerpos Antivirales/sangre , Análisis por Conglomerados , ADN Viral/química , ADN Viral/genética , Humanos , Macaca mulatta , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN , Estudios Seroepidemiológicos , Vacunas Sintéticas/genéticaRESUMEN
UNLABELLED: CD4+ T cells play a pivotal role in the control of chronic viral infections. Recently, nontraditional CD4+ T cell functions beyond helper effects have been described, and a role for cytolytic CD4+ T cells in the control of HIV infection has been suggested. We define here the transcriptional, phenotypic, and functional profiles of HIV-specific cytolytic CD4+ T cells. Fluidigm BioMark and multiparameter flow cytometric analysis of HIV-specific cytolytic CD4+ T cells revealed a distinct transcriptional signature compared to Th1 CD4+ cells but shared similar features with HIV-specific cytolytic CD8+ T cells. Furthermore, HIV-specific cytolytic CD4+ T cells showed comparable killing activity relative to HIV-specific CD8+ T cells and worked cooperatively in the elimination of virally infected cells. Interestingly, we found that cytolytic CD4+ T cells emerge early during acute HIV infection and tightly follow acute viral load trajectory. This emergence was associated to the early viral set point, suggesting an involvement in early control, in spite of CD4 T cell susceptibility to HIV infection. Our data suggest cytolytic CD4+ T cells as an independent subset distinct from Th1 cells that show combined activity with CD8+ T cells in the long-term control of HIV infection. IMPORTANCE: The ability of the immune system to control chronic HIV infection is of critical interest to both vaccine design and therapeutic approaches. Much research has focused on the effect of the ability of CD8+ T cells to control the virus, while CD4+ T cells have been overlooked as effectors in HIV control due to the fact that they are preferentially infected. We show here that a subset of HIV-specific CD4+ T cells cooperate in the cytolytic control of HIV replication. Moreover, these cells represent a distinct subset of CD4+ T cells showing significant transcriptional and phenotypic differences compared to HIV-specific Th1 cells but with similarities to CD8+ T cells. These findings are important for our understanding of HIV immunopathology.
Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Linfocitos T Citotóxicos/inmunología , Viremia/inmunología , Células Cultivadas , Infecciones por VIH/virología , VIH-1/genética , VIH-1/fisiología , Humanos , Carga Viral , Viremia/virologíaRESUMEN
UNLABELLED: Adenovirus (Ad) vaccine vectors have found widespread use as vaccine platforms against multiple infections and cancers, and multiple serotypes have been shown to differ significantly in their biological properties and immune phenotypes. Our laboratory and others have previously described differential innate immune stimulation elicited by various Ad serotypes. Here, we show that Ad serotype 5 (Ad5) traffics rapidly to the nucleus following infection, whereas Ad35 and Ad26 accumulate in late endosomes 2 to 8 h postinfection. Innate immune cytokine elicitation by all Ad serotypes was abrogated by blockade of endosomal acidification, cathepsin B, and caspase 1, suggesting that virus interactions with acid-dependent sensors, such as Toll-like receptor- and cathepsin-dependent inflammasome activation in late endosomes, may trigger innate immunity. These data suggest a mechanism by which Ad vectors from various serotypes differentially trigger innate antiviral pathways via distinct intracellular trafficking to late endosomes. IMPORTANCE: Adenoviruses (Ad) are widely used for vaccination and gene therapy applications. Importantly, Ad vectors have been shown to differ significantly in their innate immune profiles both in vivo and in vitro. The molecular mechanism that underlies these observed differences has important implications for the development of improved vaccines. In this study, we propose a mechanism in which the degree of late endosomal trafficking of Ad vectors results in differential stimulation of late endosomal pattern recognition receptors.
Asunto(s)
Infecciones por Adenovirus Humanos/inmunología , Adenovirus Humanos/inmunología , Endosomas/inmunología , Vectores Genéticos/inmunología , Inmunidad Innata , Infecciones por Adenovirus Humanos/virología , Adenovirus Humanos/clasificación , Adenovirus Humanos/genética , Endosomas/virología , Vectores Genéticos/genética , Humanos , SerogrupoRESUMEN
Despite the growing use of poxvirus vectors as vaccine candidates for multiple pathogens and cancers, their innate stimulatory properties remain poorly characterized. Here we show that the canarypox virus-based vector ALVAC induced distinct systemic proinflammatory and antiviral cytokine and chemokine levels following the vaccination of rhesus monkeys compared to the vaccinia virus-based vectors MVA and NYVAC. These data suggest that there are substantial biological differences among leading poxvirus vaccine vectors that may influence resultant adaptive immune responses following vaccination.
Asunto(s)
Virus de la Viruela de los Canarios/inmunología , Citocinas/inmunología , Vectores Genéticos/inmunología , Virus Vaccinia/inmunología , Vacunas Virales/inmunología , Animales , Virus de la Viruela de los Canarios/genética , Vectores Genéticos/genética , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/inmunología , VIH-1/fisiología , Humanos , Macaca mulatta , Proteínas de los Retroviridae/administración & dosificación , Proteínas de los Retroviridae/genética , Proteínas de los Retroviridae/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/genética , Virus de la Inmunodeficiencia de los Simios/inmunología , Virus de la Inmunodeficiencia de los Simios/fisiología , Virus Vaccinia/genética , Vacunas Virales/administración & dosificación , Vacunas Virales/genéticaRESUMEN
UNLABELLED: Prime-boost immunization regimens have proven efficacious at generating robust immune responses. However, whether the level of replication of the boosting antigen impacts the magnitude and protective efficacy of vaccine-elicited immune responses remains unclear. To evaluate this, we primed mice with replication-defective adenovirus vectors expressing the lymphocytic choriomeningitis virus (LCMV) glycoprotein (GP), followed by boosting with either LCMV Armstrong, which is rapidly controlled, or LCMV CL-13, which leads to a more prolonged exposure to the boosting antigen. Although priming of naive mice with LCMV CL-13 normally results in T cell exhaustion and establishment of chronic infection, boosting with CL-13 resulted in potent recall CD8 T cell responses that were greater than those following boosting with LCMV Armstrong. Furthermore, following the CL-13 boost, a greater number of anamnestic CD8 T cells localized to the lymph nodes, exhibited granzyme B expression, and conferred improved protection against Listeria and vaccinia virus challenges compared with the Armstrong boost. Overall, our findings suggest that the replicative capacity of the boosting antigen influences the protective efficacy afforded by prime-boost vaccine regimens. These findings are relevant for optimizing vaccine candidates and suggest a benefit of robustly replicating vaccine vectors. IMPORTANCE: The development of optimal prime-boost vaccine regimens is a high priority for the vaccine development field. In this study, we compared two boosting antigens with different replicative capacities. Boosting with a more highly replicative vector resulted in augmented immune responses and improved protective efficacy.
Asunto(s)
Inmunidad Heteróloga/inmunología , Inmunización Secundaria/métodos , Vacunas Virales/inmunología , Replicación Viral/fisiología , Adenoviridae , Animales , Antígenos Heterófilos/inmunología , Linfocitos T CD8-positivos/inmunología , Femenino , Citometría de Flujo , Vectores Genéticos , Glicoproteínas/metabolismo , Estimación de Kaplan-Meier , Listeria/inmunología , Virus de la Coriomeningitis Linfocítica/metabolismo , Ratones , Ratones Endogámicos C57BL , Estadísticas no Paramétricas , Virus Vaccinia/inmunologíaRESUMEN
Adenovirus (Ad) vaccine vectors have proven highly immunogenic in multiple experimental models, but the innate immune responses induced by these vectors remain poorly characterized. Here we report innate cytokine responses to 5 different Ad vectors in 26 rhesus monkeys. Vaccination with adenovirus serotype 35 (Ad35), Ad26, and Ad48 induced substantially higher levels of antiviral (gamma interferon [IFN-γ], 10-kDa gamma interferon-induced protein [IP-10]) and proinflammatory (interleukin 1 receptor antagonist [IL-1RA], IL-6) cytokines than vaccination with Ad5 on day 1 following immunization. In vitro studies with capsid chimeric vectors and receptor-blocking monoclonal antibodies suggested that fiber-receptor interactions, as well as other capsid components, were critical for triggering these innate responses. Moreover, multiple cell populations, including dendritic cells, monocytes/macrophages, and T lymphocytes, contributed to these innate cytokine profiles. These data demonstrate that Ad35, Ad26, and Ad48, which utilize CD46 as their primary cellular receptor, induce significantly greater innate cytokine responses than Ad5, which uses the coxsackievirus and adenovirus receptor (CAR). These differences in innate triggering result in markedly different immunologic milieus for the subsequent generation of adaptive immune responses by these vaccine vectors.
Asunto(s)
Adenovirus Humanos/clasificación , Adenovirus Humanos/inmunología , Citocinas/biosíntesis , Inmunidad Innata , Macaca mulatta/inmunología , Macaca mulatta/virología , Adenovirus Humanos/genética , Animales , Quimiocinas/biosíntesis , Quimiocinas/sangre , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus/inmunología , Citocinas/sangre , Vectores Genéticos/inmunología , Humanos , Técnicas In Vitro , Proteína Cofactora de Membrana/inmunología , Receptores Virales/inmunología , Serotipificación , Especificidad de la Especie , VacunaciónRESUMEN
The cellular receptor utilized by adenovirus serotype 26 (Ad26) has remained unclear. Here we show that Ad26 transduction is CD46-dependent and is efficiently blocked by anti-CD46 but not anti-CAR antibodies, demonstrating that Ad26 utilizes CD46 as a primary cellular receptor. Moreover, following Ad26 vaccination of rhesus monkeys, we did not observe sustained activation of peripheral or mucosal vector-specific CD4(+) T lymphocytes. These data contribute to our understanding of Ad26 as a candidate vaccine vector.
Asunto(s)
Infecciones por Adenoviridae/virología , Adenoviridae/genética , Adenoviridae/metabolismo , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus/química , Activación de Linfocitos , Proteína Cofactora de Membrana/química , Linfocitos T/virología , Infecciones por Adenoviridae/inmunología , Animales , Anticuerpos Monoclonales/química , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus/metabolismo , Vectores Genéticos , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Inflamación , Leucocitos Mononucleares/virología , Macaca mulatta , Linfocitos T/inmunología , VacunaciónRESUMEN
Estimating the size of the viral reservoir is critical for HIV cure strategies. Biomarkers in peripheral circulation may give insights into the establishment of the viral reservoir in compartments not easily accessible. We therefore measured systemic levels of 84 soluble biomarkers belonging to a broad array of immune pathways in acute HIV infection in both antiretroviral therapy-naive (ART-naive) individuals as well as individuals who began ART upon early detection of HIV infection. These biomarkers were measured longitudinally during acute and chronic infection and their relationship to viral reservoir establishment and persistence was assessed. We observed several distinct biomarker pathways induced following HIV infection such as IFN-γ-signaled chemokines, proinflammatory markers, and TNF-α-family members. Levels of several of these factors directly correlated with contemporaneous viral loads and/or frequency of peripheral blood mononuclear cells harboring HIV DNA during acute HIV infection. MCP-1, MIP-3ß, sTNFR-II, and IL-10 levels prior to ART associated with HIV DNA levels after 96 weeks of treatment, suggesting a link between early immune signaling events and the establishment and persistence of the viral reservoir during ART. Furthermore, they offer potentially novel tools for gaining insight into relative reservoir size in acutely infected individuals and the potential of associated risks of treatment interruption.
Asunto(s)
Biomarcadores/metabolismo , Infecciones por VIH/virología , Reservorios de Enfermedades , HumanosRESUMEN
CD4 T cells promote innate and adaptive immune responses, but how vaccine-elicited CD4 T cells contribute to immune protection remains unclear. We evaluated whether induction of virus-specific CD4 T cells by vaccination would protect mice against infection with chronic lymphocytic choriomeningitis virus (LCMV). Immunization with vaccines that selectively induced CD4 T cell responses resulted in catastrophic inflammation and mortality after challenge with a persistent strain of LCMV. Immunopathology required antigen-specific CD4 T cells and was associated with a cytokine storm, generalized inflammation, and multi-organ system failure. Virus-specific CD8 T cells or antibodies abrogated the pathology. These data demonstrate that vaccine-elicited CD4 T cells in the absence of effective antiviral immune responses can trigger lethal immunopathology.
Asunto(s)
Infecciones por Arenaviridae/inmunología , Linfocitos T CD4-Positivos/inmunología , Enfermedades del Sistema Inmune/etiología , Inflamación/etiología , Virus de la Coriomeningitis Linfocítica/inmunología , Vacunas Virales/efectos adversos , Vacunas Virales/inmunología , Inmunidad Adaptativa , Animales , Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , Infecciones por Arenaviridae/virología , Linfocitos T CD8-positivos/inmunología , Citocinas/sangre , Epítopos de Linfocito T/inmunología , Enfermedades del Sistema Inmune/inmunología , Enfermedades del Sistema Inmune/patología , Memoria Inmunológica , Inflamación/inmunología , Inflamación/patología , Virus de la Coriomeningitis Linfocítica/fisiología , Ratones Endogámicos C57BL , Insuficiencia Multiorgánica/etiología , Vacunación , Carga Viral , Replicación ViralRESUMEN
Hexon modification of adenovirus type 5 (Ad5) vectors with the hypervariable regions (HVRs) of Ad48 has been shown to allow Ad5HVR48 vectors to circumvent the majority of the preexisting Ad5-neutralizing antibodies. However, it remains unclear whether modifying hexon HVRs impacts innate or adaptive immune responses elicited by this vector. In this study, we investigated the influence of the HVR substitution of Ad5 on innate and adaptive immune responses following vaccination. Ad5HVR48 displayed an intermediate level of innate immune cytokines and chemokines relative to those of Ad5 and Ad48, consistent with its chimeric nature. Hepatotoxicity was observed after Ad5 immunization but not after Ad5HVR48 or Ad48 immunization. However, the CD8(+) T-cell responses elicited by Ad5HVR48 vectors displayed a partially exhausted phenotype, as evidenced by the sustained expression of programmed death 1 (PD-1), decreased effector-to-central memory conversion, and reduced memory recall responses, similar to those elicited by Ad5 vectors and in contrast to those induced by Ad48 vectors. Taken together, these results indicate that although Ad5HVR48 largely bypasses preexisting Ad5 neutralizing antibodies and shows reduced hepatotoxicity compared to that of Ad5, it induces adaptive immune phenotypes that are functionally exhausted similar to those elicited by Ad5.