Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
J Neurochem ; 168(6): 977-994, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38390627

RESUMEN

Alzheimer's disease (AD) is the most common type and accounts for 60%-70% of the reported cases of dementia. MicroRNAs (miRNAs) are small non-coding RNAs that play a crucial role in gene expression regulation. Although the diagnosis of AD is primarily clinical, several miRNAs have been associated with AD and considered as potential markers for diagnosis and progression of AD. We sought to match AD-related miRNAs in cerebrospinal fluid (CSF) found in the GeoDataSets, evaluated by machine learning, with miRNAs listed in a systematic review, and a pathway analysis. Using machine learning approaches, we identified most differentially expressed miRNAs in Gene Expression Omnibus (GEO), which were validated by the systematic review, using the acronym PECO-Population (P): Patients with AD, Exposure (E): expression of miRNAs, Comparison (C): Healthy individuals, and Objective (O): miRNAs differentially expressed in CSF. Additionally, pathway enrichment analysis was performed to identify the main pathways involving at least four miRNAs selected. Four miRNAs were identified for differentiating between patients with and without AD in machine learning combined to systematic review, and followed the pathways analysis: miRNA-30a-3p, miRNA-193a-5p, miRNA-143-3p, miRNA-145-5p. The pathways epidermal growth factor, MAPK, TGF-beta and ATM-dependent DNA damage response, were regulated by these miRNAs, but only the MAPK pathway presented higher relevance after a randomic pathway analysis. These findings have the potential to assist in the development of diagnostic tests for AD using miRNAs as biomarkers, as well as provide understanding of the relationship between different pathophysiological mechanisms of AD.


Asunto(s)
Enfermedad de Alzheimer , Minería de Datos , Aprendizaje Automático , MicroARNs , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/diagnóstico , Humanos , MicroARNs/líquido cefalorraquídeo , MicroARNs/genética , Biomarcadores/líquido cefalorraquídeo
2.
Mol Biol Rep ; 51(1): 270, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302810

RESUMEN

Dementia is the term used to describe a group of cognitive disorders characterized by a decline in memory, thinking, and reasoning abilities that interfere with daily life activities. Examples of dementia include Alzheimer's Disease (AD), Frontotemporal dementia (FTD), Amyotrophic lateral sclerosis (ALS), Vascular dementia (VaD) and Progressive supranuclear palsy (PSP). AD is the most common form of dementia. The hallmark pathology of AD includes formation of ß-amyloid (Aß) oligomers and tau hyperphosphorylation in the brain, which induces neuroinflammation, oxidative stress, synaptic dysfunction, and neuronal apoptosis. Emerging studies have associated long non-coding RNAs (lncRNAs) with the pathogenesis and progression of the neurodegenerative diseases. LncRNAs are defined as RNAs longer than 200 nucleotides that lack the ability to encode functional proteins. LncRNAs play crucial roles in numerous biological functions for their ability to interact with different molecules, such as proteins and microRNAs, and subsequently regulate the expression of their target genes at transcriptional and post-transcriptional levels. In this narrative review, we report the function and mechanisms of action of lncRNAs found to be deregulated in different types of dementia, with the focus on AD. Finally, we discuss the emerging role of lncRNAs as biomarkers of dementias.


Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , ARN Largo no Codificante , Humanos , Enfermedad de Alzheimer/genética , ARN Largo no Codificante/genética , Péptidos beta-Amiloides
3.
PLoS Pathog ; 16(12): e1009127, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33326472

RESUMEN

Viruses are obligate intracellular parasites that make use of the host metabolic machineries to meet their biosynthetic needs. Thus, identifying the host pathways essential for the virus replication may lead to potential targets for therapeutic intervention. The mechanisms and pathways explored by SARS-CoV-2 to support its replication within host cells are not fully known. Lipid droplets (LD) are organelles with major functions in lipid metabolism, energy homeostasis and intracellular transport, and have multiple roles in infections and inflammation. Here we described that monocytes from COVID-19 patients have an increased LD accumulation compared to SARS-CoV-2 negative donors. In vitro, SARS-CoV-2 infection were seen to modulate pathways of lipid synthesis and uptake as monitored by testing for CD36, SREBP-1, PPARγ, and DGAT-1 expression in monocytes and triggered LD formation in different human cell lines. LDs were found in close apposition with SARS-CoV-2 proteins and double-stranded (ds)-RNA in infected Vero cells. Electron microscopy (EM) analysis of SARS-CoV-2 infected Vero cells show viral particles colocalizing with LDs, suggestive that LDs might serve as an assembly platform. Pharmacological modulation of LD formation by inhibition of DGAT-1 with A922500 significantly inhibited SARS-CoV-2 replication as well as reduced production of mediators pro-inflammatory response. Taken together, we demonstrate the essential role of lipid metabolic reprograming and LD formation in SARS-CoV-2 replication and pathogenesis, opening new opportunities for therapeutic strategies to COVID-19.


Asunto(s)
COVID-19/complicaciones , Mediadores de Inflamación/metabolismo , Inflamación/etiología , Gotas Lipídicas/patología , SARS-CoV-2/aislamiento & purificación , Animales , COVID-19/inmunología , COVID-19/patología , COVID-19/virología , Estudios de Casos y Controles , Chlorocebus aethiops , Humanos , Inflamación/metabolismo , Inflamación/patología , Células Vero , Replicación Viral
4.
Blood ; 136(11): 1330-1341, 2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32678428

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emergent pathogen responsible for the coronavirus disease 2019 (COVID-19). Since its emergence, the novel coronavirus has rapidly achieved pandemic proportions causing remarkably increased morbidity and mortality around the world. A hypercoagulability state has been reported as a major pathologic event in COVID-19, and thromboembolic complications listed among life-threatening complications of the disease. Platelets are chief effector cells of hemostasis and pathological thrombosis. However, the participation of platelets in the pathogenesis of COVID-19 remains elusive. This report demonstrates that increased platelet activation and platelet-monocyte aggregate formation are observed in severe COVID-19 patients, but not in patients presenting mild COVID-19 syndrome. In addition, exposure to plasma from severe COVID-19 patients increased the activation of control platelets ex vivo. In our cohort of COVID-19 patients admitted to the intensive care unit, platelet-monocyte interaction was strongly associated with tissue factor (TF) expression by the monocytes. Platelet activation and monocyte TF expression were associated with markers of coagulation exacerbation as fibrinogen and D-dimers, and were increased in patients requiring invasive mechanical ventilation or patients who evolved with in-hospital mortality. Finally, platelets from severe COVID-19 patients were able to induce TF expression ex vivo in monocytes from healthy volunteers, a phenomenon that was inhibited by platelet P-selectin neutralization or integrin αIIb/ß3 blocking with the aggregation inhibitor abciximab. Altogether, these data shed light on new pathological mechanisms involving platelet activation and platelet-dependent monocyte TF expression, which were associated with COVID-19 severity and mortality.


Asunto(s)
Betacoronavirus/inmunología , Trastornos de la Coagulación Sanguínea/patología , Plaquetas/patología , Infecciones por Coronavirus/complicaciones , Monocitos/patología , Neumonía Viral/complicaciones , Tromboplastina/metabolismo , Adulto , Biomarcadores/metabolismo , Trastornos de la Coagulación Sanguínea/inmunología , Trastornos de la Coagulación Sanguínea/metabolismo , Trastornos de la Coagulación Sanguínea/virología , Plaquetas/metabolismo , Plaquetas/virología , COVID-19 , Estudios de Casos y Controles , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/virología , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Monocitos/metabolismo , Monocitos/virología , Selectina-P/metabolismo , Pandemias , Activación Plaquetaria , Neumonía Viral/inmunología , Neumonía Viral/metabolismo , Neumonía Viral/virología , Pronóstico , Estudios Prospectivos , SARS-CoV-2 , Tasa de Supervivencia
5.
Gen Comp Endocrinol ; 300: 113633, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33031801

RESUMEN

Pregnancy and lactation are reproductive processes that rely on physiological adaptations that should be timely and adequately triggered to guarantee both maternal and fetal health. Pineal melatonin is a hormone that presents daily and seasonal variations that synchronizes the organism's physiology to the different demands across time through its specific mechanisms and ways of action. The reproductive system is a notable target for melatonin as it actively participates on reproductive physiology and regulates the hypothalamus-pituitary-gonads axis, influencing gonadotropins and sexual hormones synthesis and release. For its antioxidant properties, melatonin is also vital for the oocytes and spermatozoa quality and viability, and for blastocyst development. Maternal pineal melatonin blood levels increase during pregnancy and triggers the maternal physiological alterations in energy metabolism both during pregnancy and lactation to cope with the energy demands of both periods and to promote adequate mammary gland development. Moreover, maternal melatonin freely crosses the placenta and is the only source of this hormone to the fetus. It importantly times the conceptus physiology and influences its development and programing of several functions that depend on neural and brain development, ultimately priming adult behavior and energy and glucose metabolism. The present review aims to explain the above listed melatonin functions, including the potential alterations observed in the progeny gestated under maternal chronodisruption and/or hypomelatoninemia.


Asunto(s)
Desarrollo Fetal/fisiología , Lactancia/fisiología , Melatonina/metabolismo , Glándula Pineal/metabolismo , Animales , Femenino , Humanos , Glándulas Mamarias Humanas/embriología , Sistema Nervioso/embriología , Embarazo
6.
J Neurosci Res ; 98(10): 2045-2071, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32530066

RESUMEN

Melanin-concentrating hormone (MCH) is a ubiquitous vertebrate neuropeptide predominantly synthesized by neurons of the diencephalon that can act through two G protein-coupled receptors, called MCHR1 and MCHR2. The expression of Mchr1 has been investigated in both rats and mice, but its synthesis remains poorly described. After identifying an antibody that detects MCHR1 with high specificity, we employed immunohistochemistry to map the distribution of MCHR1 in the CNS of rats and mice. Multiple neurochemical markers were also employed to characterize some of the neuronal populations that synthesize MCHR1. Our results show that MCHR1 is abundantly found in a subcellular structure called the primary cilium, which has been associated, among other functions, with the detection of free neurochemical messengers present in the extracellular space. Ciliary MCHR1 was found in a wide range of areas, including the olfactory bulb, cortical mantle, striatum, hippocampal formation, amygdala, midline thalamic nuclei, periventricular hypothalamic nuclei, midbrain areas, and in the spinal cord. No differences were observed between male and female mice, and interspecies differences were found in the caudate-putamen nucleus and the subgranular zone. Ciliary MCHR1 was found in close association with several neurochemical markers, including tyrosine hydroxylase, calretinin, kisspeptin, estrogen receptor, oxytocin, vasopressin, and corticotropin-releasing factor. Given the role of neuronal primary cilia in sensing free neurochemical messengers in the extracellular fluid, the widespread distribution of ciliary MCHR1, and the diverse neurochemical populations who synthesize MCHR1, our data indicate that nonsynaptic communication plays a prominent role in the normal function of the MCH system.


Asunto(s)
Encéfalo/metabolismo , Cilios/metabolismo , Receptores de Somatostatina/biosíntesis , Caracteres Sexuales , Animales , Cilios/genética , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratas , Ratas Long-Evans , Ratas Sprague-Dawley , Receptores de Somatostatina/genética
7.
Pharmacol Res ; 158: 104842, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32413484

RESUMEN

Macrophages are professional phagocytes that display remarkable plasticity, with a range of phenotypes that can be broadly characterized by the M1/M2 dichotomy. Glucocorticoid (GC)-induced leucine zipper (GILZ) is a protein known to mediate anti-inflammatory and some pro-resolving actions, including as neutrophil apoptosis. However, the role of GILZ in key macrophage function is not well understood. Here, we investigated the role of GILZ on macrophage reprogramming and efferocytosis. Using murine bone-marrow-derived macrophages (BMDMs), we found that GILZ was expressed in naive BMDMs and exhibited increased expression in M2-like macrophages (IL4-differentiated). M1-like macrophages (IFN/LPS-differentiated) from GILZ-/- mice showed higher expression of the M1 markers CD86, MHC class II, iNOS, IL-6 and TNF-α, associated with increased levels of phosphorylated STAT1 and lower IL-10 levels, compared to M1-differentiated cells from WT mice. There were no changes in the M2 markers CD206 and arginase-1 in macrophages from GILZ-/- mice differentiated with IL-4, compared to cells from WT animals. Treatment of M1-like macrophages with TAT-GILZ, a cell-permeable GILZ fusion protein, decreased the levels of CD86 and MHC class II in M1-like macrophages without modifying CD206 levels in M2-like macrophages. In line with the in vitro data, increased numbers of M1-like macrophages were found into the pleural cavity of GILZ-/- mice after LPS-injection, compared to WT mice. Moreover, efferocytosis was defective in the context of GILZ deficiency, both in vitro and in vivo. Conversely, treatment of LPS-injected mice with TAT-GILZ promoted inflammation resolution, associated with lower numbers of M1-like macrophages and increased efferocytosis. Collectively, these data indicate that GILZ is a regulator of important macrophage functions, contributing to macrophage reprogramming and efferocytosis, both key steps for the resolution of inflammation.


Asunto(s)
Apoptosis/efectos de los fármacos , Glucocorticoides/farmacología , Factores de Transcripción/efectos de los fármacos , Animales , Células de la Médula Ósea/efectos de los fármacos , Ensayos de Migración de Leucocitos , Fenómenos Fisiológicos Celulares/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Inflamación/inducido químicamente , Inflamación/patología , Recuento de Leucocitos , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Cavidad Pleural/citología
8.
Horm Behav ; 105: 146-156, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30114430

RESUMEN

Maternal melatonin provides photoperiodic information to the fetus and thus influences the regulation and timing of the offspring's internal rhythms and preparation for extra-uterine development. There is clinical evidence that melatonin deprivation of both mother and fetus during pregnancy, and of the neonate during lactation, results in negative long-term health outcomes. As a consequence, we hypothesized that the absence of maternal pineal melatonin might determine abnormal brain programming in the offspring, which would lead to long-lasting implications for behavior and brain function. To test our hypothesis, we investigated in rats the effects of maternal melatonin deprivation during gestation and lactation (MMD) to the offspring and the effects of its therapeutic replacement. The parameters evaluated were: (1) somatic, physical growth and neurobehavioral development of pups of both sexes; (2) hippocampal-dependent spatial learning and memory of the male offspring; (3) adult hippocampal neurogenesis of the male offspring. Our findings show that MMD significantly delayed male offspring's onset of fur development, pinna detachment, eyes opening, eruption of superior incisor teeth, testis descent and the time of maturation of palmar grasp, righting reflex, free-fall righting and walking. Conversely, female offspring neurodevelopment was not affected. Later on, male offspring show that MMD was able to disrupt both spatial reference and working memory in the Morris Water Maze paradigm and these deficits correlate with changes in the number of proliferative cells in the hippocampus. Importantly, all the observed impairments were reversed by maternal melatonin replacement therapy. In summary, we demonstrate that MMD delays the appearance of physical features, neurodevelopment and cognition in the male offspring, and points to putative public health implications for night shift working mothers.


Asunto(s)
Ritmo Circadiano/fisiología , Cognición/fisiología , Lactancia/fisiología , Melatonina/metabolismo , Efectos Tardíos de la Exposición Prenatal , Animales , Conducta Animal/fisiología , Femenino , Crecimiento y Desarrollo/fisiología , Masculino , Memoria/fisiología , Madres , Neurogénesis/fisiología , Fotoperiodo , Glándula Pineal/metabolismo , Glándula Pineal/fisiopatología , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Ratas , Ratas Wistar , Aprendizaje Espacial/fisiología
9.
Hippocampus ; 26(6): 794-803, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26669934

RESUMEN

Physical exercise stimulates cell proliferation in the adult dentate gyrus and facilitates acquisition and/or retention of hippocampal-dependent tasks. It is established that regular physical exercise improves cognitive performance. However, it is unclear for how long these benefits last after its interruption. Independent groups of rats received both free access to either unlocked (EXE Treatment) or locked (No-EXE Treatment) running wheels for 7 days, and daily injections of bromodeoxyuridine (BrdU) in the last 3 days. After a time delay period of either 1, 3, or 6 weeks without training, the animals were tested in the Morris water maze (MWM) either in a working memory task dependent on hippocampal function (MWM-HD) or in a visible platform searching task, independent on hippocampal function (MWM-NH). Data confirmed that exposure of rats to 7 days of spontaneous wheel running increases cell proliferation and neurogenesis. In contrast, neurogenesis was not accompanied by significant improvements of performance in the working memory version of the MWM. Longer time delays between the end of exercise and the beginning of cognitive training in the MWM resulted in lower cell survival; that is, the number of novel surviving mature neurons was decreased when this delay was 6 weeks as compared with when it was 1 week. In addition, data showed that while exposure to the MWM-HD working memory task substantially increased survival of novel neurons, exposure to the MWM-NH task did not, thus indicating that survival of novel dentate gyrus neurons depends on the engagement of this brain region in performance of cognitive tasks. © 2015 Wiley Periodicals, Inc.


Asunto(s)
Supervivencia Celular/fisiología , Cognición/fisiología , Actividad Motora/fisiología , Neurogénesis/fisiología , Neuronas/fisiología , Aprendizaje Espacial/fisiología , Análisis de Varianza , Animales , Antígenos Nucleares/metabolismo , Bromodesoxiuridina , Recuento de Células , Giro Dentado/citología , Giro Dentado/fisiología , Inmunohistoquímica , Masculino , Memoria a Corto Plazo/fisiología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Distribución Aleatoria , Ratas Wistar , Memoria Espacial/fisiología , Percepción Visual/fisiología
10.
Biochim Biophys Acta ; 1841(1): 97-107, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24120921

RESUMEN

The nuclear receptor PPARγ acts as a key modulator of lipid metabolism, inflammation and pathogenesis in BCG-infected macrophages. However, the molecular mechanisms involved in PPARγ expression and functions during infection are not completely understood. Here, we investigate signaling pathways triggered by TLR2, the involvement of co-receptors and lipid rafts in the mechanism of PPARγ expression, lipid body formation and cytokine synthesis in macrophages during BCG infection. BCG induces NF-κB activation and increased PPARγ expression in a TLR2-dependent manner. Furthermore, BCG-triggered increase of lipid body biogenesis was inhibited by the PPARγ antagonist GW9662, but not by the NF-κB inhibitor JSH-23. In contrast, KC/CXCL1 production was largely dependent on NF-κB but not on PPARγ. BCG infection induced increased expression of CD36 in macrophages in vitro. Moreover, CD36 co-immunoprecipitates with TLR2 in BCG-infected macrophages, suggesting its interaction with TLR2 in BCG signaling. Pretreatment with CD36 neutralizing antibodies significantly inhibited PPARγ expression, lipid body formation and PGE2 production induced by BCG. Involvement of CD36 in lipid body formation was further confirmed by decreased BCG-induced lipid body formation in CD36 deficient macrophages. Similarly, CD14 and CD11b/CD18 blockage also inhibited BCG-induced lipid body formation, whereas TNF-α synthesis was not affected. Disruption of rafts recapitulates the latter result, inhibiting lipid body formation, but not TNF-α synthesis in BCG-infected macrophages. In conclusion, our results suggest that CD36-TLR2 cooperation and signaling compartmentalization within rafts, divert host response signaling through PPARγ-dependent and NF-κB-independent pathways, leading to increased macrophage lipid accumulation and down-modulation of macrophage response.


Asunto(s)
Quimiocina CXCL1/biosíntesis , Metabolismo de los Lípidos , Mycobacterium bovis , Transducción de Señal , Receptor Toll-Like 2/metabolismo , Tuberculosis , Factor de Necrosis Tumoral alfa/biosíntesis , Anilidas/farmacología , Animales , Antígeno CD11b/biosíntesis , Antígeno CD11b/genética , Antígenos CD18/biosíntesis , Antígenos CD18/genética , Antígenos CD36/biosíntesis , Antígenos CD36/genética , Quimiocina CXCL1/genética , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Receptores de Lipopolisacáridos/biosíntesis , Receptores de Lipopolisacáridos/genética , Macrófagos/metabolismo , Macrófagos/microbiología , Macrófagos/patología , Microdominios de Membrana/genética , Microdominios de Membrana/metabolismo , Microdominios de Membrana/patología , Ratones , Ratones Noqueados , FN-kappa B/antagonistas & inhibidores , FN-kappa B/genética , FN-kappa B/metabolismo , PPAR gamma/antagonistas & inhibidores , PPAR gamma/biosíntesis , PPAR gamma/genética , Fenilendiaminas/farmacología , Receptor Toll-Like 2/genética , Tuberculosis/metabolismo , Tuberculosis/patología , Tuberculosis/veterinaria , Factor de Necrosis Tumoral alfa/genética
11.
Clin J Pain ; 40(3): 150-156, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37994738

RESUMEN

OBJECTIVE: Recent theoretical models posit that resilience acts as a resource/mechanism opposing pain catastrophizing and other vulnerability sources against pain adaptation. The aim of this study was to investigate the relationship between resilience, pain, and functionality in people living with fibromyalgia (FM). MATERIALS AND METHODS: We conducted a cross-sectional online survey of people participating in Brazilian fibromyalgia virtual support groups on Facebook in May 2018. Resilience was evaluated by the Connor-Davidson Resilience Scale. Average pain and the degree of interference of pain in the lives of participants (DIPLP) were assessed using the Brief Pain Inventory. The association between these 3 variables was evaluated through multivariable robust linear regression with adjustment for 21 potential confounders. RESULTS: We included 2176 participants with FM. Resilience was associated with a decreased DIPLP (ß: -0.38, 95% CI: -0.54 to -0.22, P <0.001) but not with average pain scores (ß: -0.01, 95% CI: -0.18 to 0.16, P =0.93). A significant interaction between resilience and average levels of pain on the DIPLP was observed so that resilience showed a much stronger protective association among participants with average null-to-mild pain than among those with moderate and severe pain levels. DISCUSSION: Our results provide evidence against beliefs that the pain of people with FM is related to low psychological resilience and shed light on the complex interrelationships between resilience, pain, and functionality. This research signals both the relevance and limits of resilience in the management of FM. Future studies evaluating behavioral interventions for FM should consider how those interventions interact with baseline pain levels and resilience.


Asunto(s)
Fibromialgia , Pruebas Psicológicas , Resiliencia Psicológica , Humanos , Fibromialgia/complicaciones , Fibromialgia/psicología , Dimensión del Dolor , Estudios Transversales , Dolor/complicaciones
12.
Int J Dev Neurosci ; 84(4): 293-304, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38530155

RESUMEN

Neonatal oxygen deficiency in rats may disturb growth and long-term metabolic homeostasis. In order to facilitate metabolic evaluation, the subjects are usually housed individually. However, social isolation associated with individually housed conditions alters animal behavior, which may influence the experimental results. This study investigated the effects of social isolation on neonatal anoxia-induced changes in growth and energy metabolism. Male and female Wistar rats were exposed, on postnatal day 2 (P2), to either 25-min of anoxia or control treatment. From P27 onward, part of the subjects of each group was isolated in standard cages, and the remaining subjects were housed in groups. At P34 or P95, the subjects were fasted for 18 h, refeed for 1 h, and then perfused 30 min later. Glycemia, leptin, insulin, and morphology of the pancreas were evaluated at both ages. For subjects perfused at P95, body weight and food intake were recorded up to P90, and the brain was collected for Fos and NeuN immunohistochemistry. Results showed that male rats exposed to neonatal anoxia and social isolation exhibited increased body weight gain despite the lack of changes in food intake. In addition, social isolation (1) decreased post-fasting weight loss and post-fasting food intake and (2) increased glycemia, insulin, and leptin levels of male and female rats exposed to anoxia and control treatments, both at P35 and P95. Furthermore, although at P35, anoxia increased insulin levels of males, it decreased the area of the ß-positive cells in the pancreas of females. At P95, anoxia increased post-prandial weight loss of males, post-fasting food intake, insulin, and leptin, and decreased Fos expression in the arcuate nucleus (ARC) of males and females. Hyperphagia was associated with possible resistance to leptin and insulin, suspected by the high circulating levels of these hormones and poor neuronal activation of ARC. This study demonstrated that continuous social isolation from weaning modifies, in a differentiated way, the long-term energy metabolism and growth of male and female Wistar rats exposed to neonatal anoxia or even control treatments. Therefore, social isolation should be considered as a factor that negatively influences experimental results and the outcomes of the neonatal injury. These results should also be taken into account in clinical procedures, since the used model simulates the preterm babies' conditions and some therapeutic approaches require isolation.


Asunto(s)
Animales Recién Nacidos , Peso Corporal , Ingestión de Alimentos , Metabolismo Energético , Hipoxia , Ratas Wistar , Aislamiento Social , Animales , Aislamiento Social/psicología , Masculino , Femenino , Ratas , Metabolismo Energético/fisiología , Ingestión de Alimentos/fisiología , Hipoxia/metabolismo , Peso Corporal/fisiología , Leptina/sangre , Leptina/metabolismo , Glucemia/metabolismo , Insulina/sangre , Insulina/metabolismo , Destete , Factores de Edad
13.
JHEP Rep ; 6(2): 100984, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38293685

RESUMEN

Background & Aims: Lipid droplet (LD) accumulation in cells and tissues is understood to be an evolutionarily conserved tissue tolerance mechanism to prevent lipotoxicity caused by excess lipids; however, the presence of excess LDs has been associated with numerous diseases. Sepsis triggers the reprogramming of lipid metabolism and LD accumulation in cells and tissues, including the liver. The functions and consequences of sepsis-triggered liver LD accumulation are not well known. Methods: Experimental sepsis was induced by CLP (caecal ligation and puncture) in mice. Markers of hepatic steatosis, liver injury, hepatic oxidative stress, and inflammation were analysed using a combination of functional, imaging, lipidomic, protein expression and immune-enzymatic assays. To prevent LD formation, mice were treated orally with A922500, a pharmacological inhibitor of DGAT1. Results: We identified that liver LD overload correlates with liver injury and sepsis severity. Moreover, the progression of steatosis from 24 h to 48 h post-CLP occurs in parallel with increased cytokine expression, inflammatory cell recruitment and oxidative stress. Lipidomic analysis of purified LDs demonstrated that sepsis leads LDs to harbour increased amounts of unsaturated fatty acids, mostly 18:1 and 18:2. An increased content of lipoperoxides within LDs was also observed. Conversely, the impairment of LD formation by inhibition of the DGAT1 enzyme reduces levels of hepatic inflammation and lipid peroxidation markers and ameliorates sepsis-induced liver injury. Conclusions: Our results indicate that sepsis triggers lipid metabolism alterations that culminate in increased liver LD accumulation. Increased LDs are associated with disease severity and liver injury. Moreover, inhibition of LD accumulation decreased the production of inflammatory mediators and lipid peroxidation while improving tissue function, suggesting that LDs contribute to the pathogenesis of liver injury triggered by sepsis. Impact and Implications: Sepsis is a complex life-threatening syndrome caused by dysregulated inflammatory and metabolic host responses to infection. The observation that lipid droplets may contribute to sepsis-associated organ injury by amplifying lipid peroxidation and inflammation provides a rationale for therapeutically targeting lipid droplets and lipid metabolism in sepsis.

14.
Vet Microbiol ; 285: 109845, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37634288

RESUMEN

Bovine alpha herpesvirus-5 (BoAHV-5) is related to the development of meningoencephalitis in cattle. Very little is known about the molecular pathways involved in the central nervous system (CNS) damage associated with inflammation during BoHV-5 infection in mice. To better identify the specific immunological pathways triggered by BoAHV-5 infection in mice, we evaluated the mRNA expression of 84 genes involved in innate and adaptive immune responses. We compared gene expression changes in the cerebrum from noninfected and infected mice with BoHV-5 at a 1 × 107 TCID50. Then, we analyzed the association of these genes with neurological signs, neuropathology, and activation of glial cells in response to BoHV-5 infection. Three days after BoAHV-5 infection, increased expression of TNF, IL-2, CXCL10, CXCR3, CCR4, CCL5, IFN-γ, IL-10, IRF7, STAT1, MX1, GATA 3 C3, LIZ2, caspase-1 and IL-1b was found. We also observed the upregulated expression of the CD8a, TBX21 and CD40LG genes and the downregulated expression of the CD4 gene after BoAHV-5 infection. In addition, BoHV-5-infected animals showed higher levels of all the evaluated inflammatory mediators (TNF, IFN-γ and IL-10) on day 3 postinfection. BoAHV-5-infected animals showed neurological changes along with meningoencephalitis, neuropil vacuolation, hemorrhage and reactive gliosis. Astrogliosis and microgliosis, indicated by increased expression of glial fibrillary acidic protein (GFAP) and ionized calcium-binding adapter molecule 1 (Iba-1), were found throughout the neuropil in infected brains. Moreover, cleaved caspase-3 immunopositive glio-inflammatory cells were visualized around some blood vessels in areas of neuroinflammation in the cerebrum. In agreement on that we found higher cleaved caspase-3 and Iba-1 expression evaluated by western blot analysis in the brains of infected mice compared to control mice. In conclusion, our results revealed.

15.
Metabolites ; 13(7)2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37512587

RESUMEN

Brazil has the second-highest COVID-19 death rate worldwide, and Rio de Janeiro is among the states with the highest rate in the country. Although vaccine coverage has been achieved, it is anticipated that COVID-19 will transition into an endemic disease. It is concerning that the molecular mechanisms underlying clinical evolution from mild to severe disease, as well as the mechanisms leading to long COVID-19, are not yet fully understood. NMR and MS-based metabolomics were used to identify metabolites associated with COVID-19 pathophysiology and disease outcome. Severe COVID-19 cases (n = 35) were enrolled in two reference centers in Rio de Janeiro within 72 h of ICU admission, alongside 12 non-infected control subjects. COVID-19 patients were grouped into survivors (n = 18) and non-survivors (n = 17). Choline-related metabolites, serine, glycine, and betaine, were reduced in severe COVID-19, indicating dysregulation in methyl donors. Non-survivors had higher levels of creatine/creatinine, 4-hydroxyproline, gluconic acid, and N-acetylserine, indicating liver and kidney dysfunction. Several changes were greater in women; thus, patients' sex should be considered in pandemic surveillance to achieve better disease stratification and improve outcomes. These metabolic alterations may be useful to monitor organ (dys) function and to understand the pathophysiology of acute and possibly post-acute COVID-19 syndromes.

16.
JCI Insight ; 8(8)2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36917195

RESUMEN

Sepsis is a lethal syndrome characterized by systemic inflammation and abnormal coagulation. Despite therapeutic advances, sepsis mortality remains substantially high. Herein, we investigated the role of the plasminogen/plasmin (Plg/Pla) system during sepsis. Plasma levels of Plg were significantly lower in mice subjected to severe compared with nonsevere sepsis, whereas systemic levels of IL-6, a marker of sepsis severity, were higher in severe sepsis. Plg levels correlated negatively with IL-6 in both septic mice and patients, whereas plasminogen activator inhibitor-1 levels correlated positively with IL-6. Plg deficiency render mice susceptible to nonsevere sepsis induced by cecal ligation and puncture (CLP), resulting in greater numbers of neutrophils and M1 macrophages, liver fibrin(ogen) deposition, lower efferocytosis, and increased IL-6 and neutrophil extracellular trap (NET) release associated with organ damage. Conversely, inflammatory features, fibrin(ogen), and organ damage were substantially reduced, and efferocytosis was increased by exogenous Pla given during CLP- and LPS-induced endotoxemia. Plg or Pla protected mice from sepsis-induced lethality and enhanced the protective effect of antibiotics. Mechanistically, Plg/Pla-afforded protection was associated with regulation of NET release, requiring Pla-protease activity and lysine binding sites. Plg/Pla are important host-protective players during sepsis, controlling local and systemic inflammation and collateral organ damage.


Asunto(s)
Trampas Extracelulares , Sepsis , Ratones , Animales , Fibrinolisina , Plasminógeno , Trampas Extracelulares/metabolismo , Interleucina-6/metabolismo , Inflamación/metabolismo , Sepsis/metabolismo , Fibrina/metabolismo
17.
J Infect Dis ; 204(6): 951-61, 2011 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-21849292

RESUMEN

Lipid bodies (lipid droplets) are lipid-rich organelles with functions in cell metabolism and signaling. Here, we investigate the mechanisms of Trypanosoma cruzi-induced lipid body formation and their contributions to host-parasite interplay. We demonstrate that T. cruzi-induced lipid body formation in macrophages occurs in a Toll-like receptor 2-dependent mechanism and is potentiated by apoptotic cell uptake. Lipid body biogenesis and prostaglandin E2 (PGE2) production triggered by apoptotic cell uptake was largely dependent of α(v)ß3 and transforming growth factor-ß signaling. T. cruzi-induced lipid bodies act as sites of increased PGE synthesis. Inhibition of lipid body biogenesis by the fatty acid synthase inhibitor C75 reversed the effects of apoptotic cells on lipid body formation, eicosanoid synthesis, and parasite replication. Our findings indicate that lipid bodies are highly regulated organelles during T. cruzi infection with roles in lipid mediator generation by macrophages and are potentially involved in T. cruzi-triggered escape mechanisms.


Asunto(s)
Enfermedad de Chagas/patología , Dinoprostona/metabolismo , Interacciones Huésped-Parásitos , Metabolismo de los Lípidos , Macrófagos/metabolismo , Macrófagos/parasitología , Trypanosoma cruzi/patogenicidad , Animales , Femenino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Receptor Toll-Like 2/metabolismo , Trypanosoma cruzi/crecimiento & desarrollo
18.
PeerJ ; 10: e13134, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35345592

RESUMEN

Background: Pain is the leading cause of animal suffering, hence the importance of validated tools to ensure its appropriate evaluation and treatment. We aimed to test the psychometric properties of the short form of the Unesp-Botucatu Feline Pain Scale (UFEPS-SF) in eight languages. Methods: The original scale was condensed from ten to four items. The content validation was performed by five specialists in veterinary anesthesia and analgesia. The English version of the scale was translated and back-translated into Chinese, French, German, Italian, Japanese, Portuguese and Spanish by fluent English and native speaker translators. Videos of the perioperative period of 30 cats submitted to ovariohysterectomy (preoperative, after surgery, after rescue analgesia and 24 h after surgery) were randomly evaluated twice (one-month interval) by one evaluator for each language unaware of the pain condition. After watching each video, the evaluators scored the unidimensional, UFEPS-SF and Glasgow composite multidimensional feline pain scales. Statistical analyses were carried out using R software for intra and interobserver reliability, principal component analysis, criteria concurrent and predictive validities, construct validity, item-total correlation, internal consistency, specificity, sensitivity, the definition of the intervention score for rescue analgesia and diagnostic uncertainty zone, according to the receiver operating characteristic (ROC) curve. Results: UFEPS-SF intra- and inter-observer reliability were ≥0.92 and 0.84, respectively, for all observers. According to the principal component analysis, UFEPS-SF is a unidimensional scale. Concurrent criterion validity was confirmed by the high correlation between UFEPS-SF and all other scales (≥0.9). The total score and all items of UFEPS-SF increased after surgery (pain), decreased to baseline after analgesia and were intermediate at 24 h after surgery (moderate pain), confirming responsiveness and construct validity. Item total correlation of each item (0.68-0.83) confirmed that the items contributed homogeneously to the total score. Internal consistency was excellent (≥0.9) for all items. Both specificity (baseline) and sensitivity (after surgery) based on the Youden index was 99% (97-100%). The suggestive cut-off score for the administration of analgesia according to the ROC curve was ≥4 out of 12. The diagnostic uncertainty zone ranged from 3 to 4. The area under the curve of 0.99 indicated excellent discriminatory capacity of UFEPS-SF. Conclusions: The UFEPS-SF and its items, assessed by experienced evaluators, demonstrated very good repeatability and reproducibility, content, criterion and construct validities, item-total correlation, internal consistency, excellent sensitivity and specificity and a cut-off point indicating the need for rescue analgesia in Chinese, French, English, German, Italian, Japanese, Portuguese and Spanish.


Asunto(s)
Analgesia , Dolor Postoperatorio , Gatos , Animales , Reproducibilidad de los Resultados , Dolor Postoperatorio/diagnóstico , Analgesia/veterinaria , Lenguaje , Traducción
19.
J Leukoc Biol ; 111(5): 1107-1121, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35322471

RESUMEN

Infection by SARS-CoV-2 may elicit uncontrolled and damaging inflammatory responses. Thus, it is critical to identify compounds able to inhibit virus replication and thwart the inflammatory reaction. Here, we show that the plasma levels of the immunoregulatory neuropeptide VIP are elevated in patients with severe COVID-19, correlating with reduced inflammatory mediators and with survival on those patients. In vitro, vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP), highly similar neuropeptides, decreased the SARS-CoV-2 RNA content in human monocytes and viral production in lung epithelial cells, also reducing cell death. Both neuropeptides inhibited the production of proinflammatory mediators in lung epithelial cells and in monocytes. VIP and PACAP prevented in monocytes the SARS-CoV-2-induced activation of NF-kB and SREBP1 and SREBP2, transcriptions factors involved in proinflammatory reactions and lipid metabolism, respectively. They also promoted CREB activation, a transcription factor with antiapoptotic activity and negative regulator of NF-kB. Specific inhibition of NF-kB and SREBP1/2 reproduced the anti-inflammatory, antiviral, and cell death protection effects of VIP and PACAP. Our results support further clinical investigations of these neuropeptides against COVID-19.


Asunto(s)
COVID-19 , Péptido Intestinal Vasoactivo , Humanos , Lipopolisacáridos/farmacología , FN-kappa B/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , ARN Viral , Receptores de Tipo I del Polipéptido Intestinal Vasoactivo , SARS-CoV-2 , Factores de Transcripción/metabolismo , Péptido Intestinal Vasoactivo/farmacología
20.
Blood Adv ; 6(17): 5085-5099, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-35420680

RESUMEN

Accumulating evidence into the pathogenesis of COVID-19 highlights a hypercoagulability state with high risk of life-threatening thromboembolic complications. However, the mechanisms of hypercoagulability and their link to hyperinflammation remain poorly understood. Here, we investigate functions and mechanisms of platelet activation and platelet-monocyte interactions in inflammatory amplification during SARS-CoV-2 infection. We used a combination of immunophenotyping, single-cell analysis, functional assays, and pharmacological approaches to gain insights on mechanisms. Critically ill patients with COVID-19 exhibited increased platelet-monocyte aggregates formation. We identified a subset of inflammatory monocytes presenting high CD16 and low HLA-DR expression as the subset mainly interacting with platelets during severe COVID-19. Single-cell RNA-sequencing analysis indicated enhanced fibrinogen receptor Mac-1 in monocytes from patients with severe COVID-19. Monocytes from patients with severe COVID-19 displayed increased platelet binding and hyperresponsiveness to P-selectin and fibrinogen with respect to tumor necrosis factor-α and interleukin-1ß secretion. Platelets were able to orchestrate monocyte responses driving tissue factor (TF) expression, inflammatory activation, and inflammatory cytokines secretion in SARS-CoV-2 infection. Platelet-monocyte interactions ex vivo and in SARS-CoV-2 infection model in vitro reciprocally activated monocytes and platelets, inducing the heightened secretion of a wide panel of inflammatory mediators. We identified platelet adhesion as a primary signaling mechanism inducing mediator secretion and TF expression, whereas TF signaling played major roles in amplifying inflammation by inducing proinflammatory cytokines, especially tumor necrosis factor-α and interleukin-1ß. Our data identify platelet-induced TF expression and activity at the crossroad of coagulation and inflammation in severe COVID-19.


Asunto(s)
COVID-19 , Trombofilia , Trombosis , Plaquetas/metabolismo , Citocinas/metabolismo , Humanos , Inflamación/patología , Interleucina-1beta/metabolismo , Monocitos/metabolismo , SARS-CoV-2 , Tromboinflamación , Tromboplastina/metabolismo , Trombosis/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA