RESUMEN
The YEASTRACT+ information system (http://YEASTRACT-PLUS.org/) is a wide-scope tool for the analysis and prediction of transcription regulatory associations at the gene and genomic levels in yeasts of biotechnological or human health relevance. YEASTRACT+ is a new portal that integrates the previously existing YEASTRACT (http://www.yeastract.com/) and PathoYeastract (http://pathoyeastract.org/) databases and introduces the NCYeastract (Non-Conventional Yeastract) database (http://ncyeastract.org/), focused on the so-called non-conventional yeasts. The information in the YEASTRACT database, focused on Saccharomyces cerevisiae, was updated. PathoYeastract was extended to include two additional pathogenic yeast species: Candida parapsilosis and Candida tropicalis. Furthermore, the NCYeastract database was created, including five biotechnologically relevant yeast species: Zygosaccharomyces baillii, Kluyveromyces lactis, Kluyveromyces marxianus, Yarrowia lipolytica and Komagataella phaffii. The YEASTRACT+ portal gathers 289 706 unique documented regulatory associations between transcription factors (TF) and target genes and 420 DNA binding sites, considering 247 TFs from 10 yeast species. YEASTRACT+ continues to make available tools for the prediction of the TFs involved in the regulation of gene/genomic expression. In this release, these tools were upgraded to enable predictions based on orthologous regulatory associations described for other yeast species, including two new tools for cross-species transcription regulation comparison, based on multi-species promoter and TF regulatory network analyses.
Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Genómica , Levaduras/genética , Sitios de Unión , Candida tropicalis/genética , Redes Reguladoras de Genes , Kluyveromyces/genética , Filogenia , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/genética , Programas Informáticos , Especificidad de la Especie , Factores de Transcripción/genética , Transcripción Genética , Yarrowia/genética , Zygosaccharomyces/genéticaRESUMEN
Marine microbiomes are prolific sources of bioactive natural products of potential pharmaceutical value. This study inspected two culture collections comprising 919 host-associated marine bacteria belonging to 55 genera and several thus-far unclassified lineages to identify isolates with potentially rich secondary metabolism and antimicrobial activities. Seventy representative isolates had their genomes mined for secondary metabolite biosynthetic gene clusters (SM-BGCs) and were screened for antimicrobial activities against four pathogenic bacteria and five pathogenic Candida strains. In total, 466 SM-BGCs were identified, with antimicrobial peptide- and polyketide synthase-related SM-BGCs being frequently detected. Only 38 SM-BGCs had similarities greater than 70% to SM-BGCs encoding known compounds, highlighting the potential biosynthetic novelty encoded by these genomes. Cross-streak assays showed that 33 of the 70 genome-sequenced isolates were active against at least one Candida species, while 44 isolates showed activity against at least one bacterial pathogen. Taxon-specific differences in antimicrobial activity among isolates suggested distinct molecules involved in antagonism against bacterial versus Candida pathogens. The here reported culture collections and genome-sequenced isolates constitute a valuable resource of understudied marine bacteria displaying antimicrobial activities and potential for the biosynthesis of novel secondary metabolites, holding promise for a future sustainable production of marine drug leads.
Asunto(s)
Antozoos , Antiinfecciosos , Poríferos , Animales , Humanos , Metabolismo Secundario/genética , Bacterias/metabolismo , Poríferos/genética , Familia de Multigenes , Candida , Antiinfecciosos/farmacología , Antiinfecciosos/metabolismo , Antozoos/genética , FilogeniaRESUMEN
Although Saccharomyces cerevisiae and S. cerevisiae var. boulardii share more than 95% genome sequence homology, only S. cerevisiae var. boulardii displays probiotic activity. In this study, the transcriptomic differences exhibited by S. cerevisiae and S. cerevisiae var. boulardii in intestinal like medium were evaluated. S. cerevisiae was found to display stress response overexpression, consistent with higher ability of S. cerevisiae var. boulardii to survive within the human host, while S. cerevisiae var. boulardii exhibited transcriptional patterns associated with probiotic activity, suggesting increased acetate biosynthesis. Resorting to the creation of a S. cerevisiae var. boulardii genomic database within Yeastract+, a possible correlation between loss or gain of transcription factor binding sites in S. cerevisiae var. boulardii promoters and the transcriptomic pattern is discussed. This study suggests that S. cerevisiae var. boulardii probiotic activity, when compared to S. cerevisiae, relies, at least partially, on differential expression regulation, based on promoter variability.
Asunto(s)
Polimorfismo Genético , Probióticos , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/genética , Transcriptoma , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Activación TranscripcionalRESUMEN
Numerous genomes are sequenced and made available to the community through the NCBI portal. However, and, unlike what happens for gene function annotation, annotation of promoter sequences and the underlying prediction of regulatory associations is mostly unavailable, severely limiting the ability to interpret genome sequences in a functional genomics perspective. Here we present an approach where one can download a genome of interest from NCBI in the GenBank Flat File (.gbff) format and, with a minimum set of commands, have all the information parsed, organized and made available through the platform web interface. Also, the new genomes are compared with a given genome of reference in search of homologous genes, shared regulatory elements and predicted transcription associations. We present this approach within the context of Community YEASTRACT of the YEASTRACT + portal, thus benefiting from immediate access to all the comparative genomics queries offered in the YEASTRACT + portal. Besides the yeast community, other communities can install the platform independently, without any constraints. In this work, we exemplify the usefulness of the presented tool, within Community YEASTRACT, in constructing a dedicated database and analysing the genome of the highly promising oleaginous red yeast species Rhodotorula toruloides currently poorly studied at the genome and transcriptome levels and with limited genome editing tools. Regulatory prediction is based on the conservation of promoter sequences and available regulatory networks. The case-study examined is focused on the Haa1 transcription factor-a key regulator of yeast resistance to acetic acid, an important inhibitor of industrial bioconversion of lignocellulosic hydrolysates. The new tool described here led to the prediction of a RtHaa1 regulon with expected impact in the optimization of R. toruloides robustness for lignocellulosic and pectin-rich residue biorefinery processes.
Asunto(s)
Regulón , Levaduras , Anotación de Secuencia Molecular , Rhodotorula , Factores de Transcripción , Levaduras/genéticaRESUMEN
Responding to the recent interest of the yeast research community in non-Saccharomyces cerevisiae species of biotechnological relevance, the N.C.Yeastract (http://yeastract-plus.org/ncyeastract/) was associated to YEASTRACT + (http://yeastract-plus.org/). The YEASTRACT + portal is a curated repository of known regulatory associations between transcription factors (TFs) and target genes in yeasts. N.C.Yeastract gathers all published regulatory associations and TF-binding sites for Komagataellaphaffii (formerly Pichia pastoris), the oleaginous yeast Yarrowia lipolytica, the lactose fermenting species Kluyveromyces lactis and Kluyveromyces marxianus, and the remarkably weak acid-tolerant food spoilage yeast Zygosaccharomyces bailii. The objective of this review paper is to advertise the update of the existing information since the release of N.C.Yeastract in 2019, and to raise awareness in the community about its potential to help the day-to-day work on these species, exploring all the information available in the global YEASTRACT + portal. Using simple and widely used examples, a guided exploitation is offered for several tools: (i) inference of orthologous genes; (ii) search for putative TF binding sites and (iii) inter-species comparison of transcription regulatory networks and prediction of TF-regulated networks based on documented regulatory associations available in YEASTRACT + for well-studied species. The usage potentialities of the new CommunityYeastract platform by the yeast community are also discussed.
Asunto(s)
Regulación Fúngica de la Expresión Génica , Yarrowia , Bases de Datos Genéticas , Genómica , Saccharomyces cerevisiae , Levaduras/genéticaRESUMEN
Candida glabrata is an emerging fungal pathogen whose success depends on its ability to resist antifungal drugs but also to thrive against host defenses. In this study, the predicted multidrug transporter CgTpo4 (encoded by ORF CAGL0L10912g) is described as a new determinant of virulence in C. glabrata, using the infection model Galleria mellonella. The CgTPO4 gene was found to be required for the C. glabrata ability to kill G. mellonella. The transporter encoded by this gene is also necessary for antimicrobial peptide (AMP) resistance, specifically against histatin-5. Interestingly, G. mellonella's AMP expression was found to be strongly activated in response to C. glabrata infection, suggesting AMPs are a key antifungal defense. CgTpo4 was also found to be a plasma membrane exporter of polyamines, especially spermidine, suggesting that CgTpo4 is able to export polyamines and AMPs, thus conferring resistance to both stress agents. Altogether, this study presents the polyamine exporter CgTpo4 as a determinant of C. glabrata virulence, which acts by protecting the yeast cells from the overexpression of AMPs, deployed as a host defense mechanism.
Asunto(s)
Candida glabrata/genética , Candidiasis/microbiología , Proteínas Fúngicas/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Poliaminas/farmacología , Proteínas Citotóxicas Formadoras de Poros/farmacología , Antifúngicos/metabolismo , Antifúngicos/farmacología , Candida glabrata/efectos de los fármacos , Candida glabrata/metabolismo , Candida glabrata/patogenicidad , Candidiasis/tratamiento farmacológico , Candidiasis/metabolismo , Farmacorresistencia Fúngica , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Histatinas/metabolismo , Histatinas/farmacología , Humanos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Poliaminas/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , VirulenciaRESUMEN
The ability to acquire azole resistance is an emblematic trait of the fungal pathogen Candida glabrata Understanding the molecular basis of azole resistance in this pathogen is crucial for designing more suitable therapeutic strategies. This study shows that the C. glabrata transcription factor (TF) CgRpn4 is a determinant of azole drug resistance. RNA sequencing during fluconazole exposure revealed that CgRpn4 regulates the expression of 212 genes, activating 80 genes and repressing, likely in an indirect fashion, 132 genes. Targets comprise several proteasome and ergosterol biosynthesis genes, including ERG1, ERG2, ERG3, and ERG11 The localization of CgRpn4 to the nucleus increases upon fluconazole stress. Consistent with a role in ergosterol and plasma membrane homeostasis, CgRpn4 is required for the maintenance of ergosterol levels upon fluconazole stress, which is associated with a role in the upkeep of cell permeability and decreased intracellular fluconazole accumulation. We provide evidence that CgRpn4 directly regulates ERG11 expression through the TTGCAAA binding motif, reinforcing the relevance of this regulatory network in azole resistance. In summary, CgRpn4 is a new regulator of the ergosterol biosynthesis pathway in C. glabrata, contributing to plasma membrane homeostasis and, thus, decreasing azole drug accumulation.
Asunto(s)
Candida glabrata , Fluconazol , Factores de Transcripción , Antifúngicos/farmacología , Candida glabrata/genética , Candida glabrata/metabolismo , Membrana Celular/metabolismo , Farmacorresistencia Fúngica/genética , Ergosterol , Fluconazol/farmacología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Permeabilidad , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
The YEAst Search for Transcriptional Regulators And Consensus Tracking (YEASTRACT-www.yeastract.com) information system has been, for 11 years, a key tool for the analysis and prediction of transcription regulatory associations at the gene and genomic levels in Saccharomyces cerevisiae. Since its last update in June 2017, YEASTRACT includes approximately 163000 regulatory associations between transcription factors (TF) and target genes in S. cerevisiae, based on more than 1600 bibliographic references; it also includes 247 specific DNA binding consensus recognized by 113 TFs. This release of the YEASTRACT database provides new visualization tools to visualize each regulatory network in an interactive fashion, enabling the user to select and observe subsets of the network such as: (i) considering only DNA binding evidence or both DNA binding and expression evidence; (ii) considering only either positive or negative regulatory associations; or (iii) considering only one set of related environmental conditions. A further tool to observe TF regulons is also offered, enabling a clear-cut understanding of the exact meaning of the available data. We believe that with this new version, YEASTRACT will improve its role as an open web resource instrumental for Yeast Biologists and Systems Biology researchers.
Asunto(s)
Bases de Datos Genéticas , Regulación Fúngica de la Expresión Génica , Redes Reguladoras de Genes , Saccharomyces cerevisiae/genética , Transcripción Genética , Regulón , Factores de Transcripción/metabolismoRESUMEN
Candida glabrata is an emerging fungal pathogen. Its increased prevalence is associated with its ability to rapidly develop antifungal drug resistance, particularly to azoles. In order to unravel new molecular mechanisms behind azole resistance, a transcriptomics analysis of the evolution of a C. glabrata clinical isolate (isolate 044) from azole susceptibility to posaconazole resistance (21st day), clotrimazole resistance (31st day), and fluconazole and voriconazole resistance (45th day), induced by longstanding incubation with fluconazole, was carried out. All the evolved strains were found to accumulate lower concentrations of azole drugs than the parental strain, while the ergosterol concentration remained mostly constant. However, only the population displaying resistance to all azoles was found to have a gain-of-function mutation in the C. glabrataPDR1 gene, leading to the upregulation of genes encoding multidrug resistance transporters. Intermediate strains, exhibiting posaconazole/clotrimazole resistance and increased fluconazole/voriconazole MIC levels, were found to display alternative ways to resist azole drugs. Particularly, posaconazole/clotrimazole resistance after 31 days was correlated with increased expression of adhesin genes. This finding led us to identify the Epa3 adhesin as a new determinant of azole resistance. Besides being required for biofilm formation, Epa3 expression was found to decrease the intracellular accumulation of azole antifungal drugs. Altogether, this work provides a glimpse of the transcriptomics evolution of a C. glabrata population toward multiazole resistance, highlighting the multifactorial nature of the acquisition of azole resistance and pointing out a new player in azole resistance.
Asunto(s)
Antifúngicos/farmacología , Azoles/farmacología , Candida glabrata/efectos de los fármacos , Candida glabrata/genética , Farmacorresistencia Fúngica/genética , Candida glabrata/aislamiento & purificación , Clotrimazol/farmacología , Ergosterol/metabolismo , Fluconazol/farmacología , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Humanos , Proteínas de Transporte de Membrana/genética , Pruebas de Sensibilidad Microbiana , Factores de Transcripción/genética , Transcriptoma/genética , Triazoles/farmacología , Voriconazol/farmacologíaRESUMEN
Candida albicans and Candida glabrata are the two most prevalent etiologic agents of candidiasis worldwide. Although both are recognized as pathogenic, their choice of virulence traits is highly divergent. Indeed, it appears that these different approaches to fungal virulence may be equally successful in causing human candidiasis. In this review, the virulence mechanisms employed by C. albicans and C. glabrata are analyzed, with emphasis on the differences between the two systems. Pathogenesis features considered in this paper include dimorphic growth, secreted enzymes and signaling molecules, and stress resistance mechanisms. The consequences of these traits in tissue invasion, biofilm formation, immune system evasion, and macrophage escape, in a species dependent manner, are discussed. This review highlights the observation that C. albicans and C. glabrata follow different paths leading to a similar outcome. It also highlights the lack of knowledge on some of the specific mechanisms underlying C. glabrata pathogenesis, which deserve future scrutiny.
Asunto(s)
Candida albicans/patogenicidad , Candida glabrata/patogenicidad , Animales , Biopelículas/crecimiento & desarrollo , Candida albicans/inmunología , Candida albicans/fisiología , Candida glabrata/inmunología , Candida glabrata/fisiología , Interacciones Huésped-Patógeno/inmunología , Humanos , Evasión Inmune , Virulencia/inmunologíaRESUMEN
The mechanisms of persistence and virulence associated with Candida glabrata infections are poorly understood, limiting the ability to fight this fungal pathogen. In this study, the multidrug resistance transporters CgTpo1_1 and CgTpo1_2 are shown to play a role in C. glabrata virulence. The survival of the infection model Galleria mellonella, infected with C. glabrata, was found to increase upon the deletion of either CgTPO1_1 or CgTPO1_2. The underlying mechanisms were further explored. In the case of CgTpo1_1, this phenotype was found to be consistent with the observation that it confers resistance to antimicrobial peptides (AMP), such as the human AMP histatin-5. The deletion of CgTPO1_2, on the other hand, was found to limit the survival of C. glabrata cells when exposed to phagocytosis and impair biofilm formation. Interestingly, CgTPO1_2 expression was found to be up-regulated during biofilm formation, but and its deletion leads to a decreased expression of adhesin-encoding genes during biofilm formation, which is consistent with a role in biofilm formation. CgTPO1_2 expression was further seen to decrease plasma membrane potential and affect ergosterol and fatty acid content. Altogether, CgTpo1_1 and CgTpo1_2 appear to play an important role in the virulence of C. glabrata infections, being at the cross-road between multidrug resistance and pathogenesis.
Asunto(s)
Biopelículas , Candida glabrata/fisiología , Proteínas Fúngicas/fisiología , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/fisiología , Animales , Antifúngicos/farmacología , Candida glabrata/efectos de los fármacos , Candida glabrata/patogenicidad , Resistencia a Múltiples Medicamentos , Ergosterol/metabolismo , Ácidos Grasos/metabolismo , Expresión Génica , Genes Fúngicos , Hemocitos/microbiología , Histatinas/farmacología , Humanos , Larva/microbiología , Metabolismo de los Lípidos , Potenciales de la Membrana , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana , Mariposas Nocturnas , Fagocitosis , VirulenciaRESUMEN
Azoles are widely used antifungal drugs. This family of compounds includes triazoles, mostly used in the treatment of systemic infections, and imidazoles, such as clotrimazole, often used in the case of superficial infections. Candida glabrata is the second most common cause of candidemia worldwide and presents higher levels of intrinsic azole resistance when compared with Candida albicans, thus being an interesting subject for the study of azole resistance mechanisms in fungal pathogens.Since resistance often relies on the action of membrane transporters, including drug efflux pumps from the ATP-binding cassette family or from the Drug:H(+) antiporter (DHA)(1) family, an iTRAQ-based membrane proteomics analysis was performed to identify all the membrane-associated proteins whose abundance changes in C. glabrata cells exposed to the azole drug clotrimazole. Proteins found to have significant expression changes in this context were clustered into functional groups, namely: glucose metabolism, oxidative phosphorylation, mitochondrial import, ribosome components and translation machinery, lipid metabolism, multidrug resistance transporters, cell wall assembly, and stress response, comprising a total of 37 proteins. Among these, the DHA transporter CgTpo1_2 (ORF CAGL0E03674g) was identified as overexpressed in the C. glabrata membrane in response to clotrimazole. Functional characterization of this putative drug:H(+) antiporter, and of its homolog CgTpo1_1 (ORF CAGL0G03927g), allowed the identification of these proteins as localized to the plasma membrane and conferring azole drug resistance in this fungal pathogen by actively extruding the drug to the external medium. The cell wall protein CgGas1 was also shown to confer azole drug resistance through cell wall remodeling. Finally, the transcription factor CgPdr1 in the clotrimazole response was observed to control the expression of 20 of the identified proteins, thus highlighting the existence of additional unforeseen targets of this transcription factor, recognized as a major regulator of azole drug resistance in clinical isolates.
Asunto(s)
Candida glabrata/efectos de los fármacos , Clotrimazol/farmacología , Proteínas Fúngicas/metabolismo , Proteínas de la Membrana/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Antifúngicos/farmacología , Antiportadores/genética , Antiportadores/metabolismo , Candida glabrata/genética , Candida glabrata/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Farmacorresistencia Fúngica/efectos de los fármacos , Farmacorresistencia Fúngica/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de la Membrana/genética , Microscopía Fluorescente , Mutación , Proteoma/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
The action of benzoic acid in the food and beverage industries is compromised by the ability of spoilage yeasts to cope with this food preservative. Benzoic acid occurs naturally in many plants and is an intermediate compound in the biosynthesis of many secondary metabolites. The understanding of the mechanisms underlying the response and resistance to benzoic acid stress in the eukaryotic model yeast is thus crucial to design more suitable strategies to deal with this toxic lipophilic weak acid. In this study, the Saccharomyces cerevisiae multidrug transporter Tpo1 was demonstrated to confer resistance to benzoic acid. TPO1 transcript levels were shown to be up-regulated in yeast cells suddenly exposed to this stress agent. This up-regulation is under the control of the Gcn4 and Stp1 transcription factors, involved in the response to amino acid availability, but not under the regulation of the multidrug resistance transcription factors Pdr1 and Pdr3 that have binding sites in TPO1 promoter region. Benzoic acid stress was further shown to affect the intracellular pool of amino acids and polyamines. The observed decrease in the concentration of these nitrogenous compounds, registered upon benzoic acid stress exposure, was not found to be dependent on Tpo1, although the limitation of yeast cells on nitrogenous compounds was found to activate Tpo1 expression. Altogether, the results described in this study suggest that Tpo1 is one of the key players standing in the crossroad between benzoic acid stress response and tolerance and the control of the intracellular concentration of nitrogenous compounds. Also, results can be useful to guide the design of more efficient preservation strategies and the biotechnological synthesis of benzoic acid or benzoic acid-derived compounds.
Asunto(s)
Antiportadores/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Ácido Benzoico/farmacología , Proteínas Nucleares/metabolismo , Proteínas de Transporte de Catión Orgánico/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismo , Aminoácidos , Antiportadores/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Sitios de Unión , Farmacorresistencia Fúngica Múltiple/genética , Tolerancia a Medicamentos , Conservantes de Alimentos , Regulación Fúngica de la Expresión Génica , Proteínas Nucleares/genética , Proteínas de Transporte de Catión Orgánico/genética , Poliaminas , Proteínas de Unión al ARN/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transactivadores , Factores de Transcripción/genética , Activación Transcripcional , Regulación hacia ArribaRESUMEN
Root vacuolar sequestration is one of the best-conserved plant strategies to cope with heavy metal toxicity. Here we report that zinc (Zn) tolerance in Arabidopsis requires the action of a novel Major Facilitator Superfamily (MFS) transporter. We show that ZIF2 (Zinc-Induced Facilitator 2) localises primarily at the tonoplast of root cortical cells and is a functional transporter able to mediate Zn efflux when heterologously expressed in yeast. By affecting plant tissue partitioning of the metal ion, loss of ZIF2 function exacerbates plant sensitivity to excess Zn, while its overexpression enhances Zn tolerance. The ZIF2 gene is Zn-induced and an intron retention event in its 5'UTR generates two splice variants (ZIF2.1 and ZIF2.2) encoding the same protein. Importantly, high Zn favours production of the longer ZIF2.2 transcript, which compared to ZIF2.1 confers greater Zn tolerance to transgenic plants by promoting higher root Zn immobilization. We show that the retained intron in the ZIF2 5'UTR enhances translation in a Zn-responsive manner, markedly promoting ZIF2 protein expression under excess Zn. Moreover, Zn regulation of translation driven by the ZIF2.2 5'UTR depends largely on a predicted stable stem loop immediately upstream of the start codon that is lost in the ZIF2.1 5'UTR. Collectively, our findings indicate that alternative splicing controls the levels of a Zn-responsive mRNA variant of the ZIF2 transporter to enhance plant tolerance to the metal ion.
Asunto(s)
Arabidopsis/genética , Intoxicación por Metales Pesados , Intrones/genética , Intoxicación/genética , Zinc/toxicidad , Regiones no Traducidas 5'/genética , Arabidopsis/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Homeostasis , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente/genética , ARN Mensajero/biosíntesis , Vacuolas/metabolismoRESUMEN
Many key aspects of plant development are regulated by the polarized transport of the phytohormone auxin. Cellular auxin efflux, the rate-limiting step in this process, has been shown to rely on the coordinated action of PIN-formed (PIN) and B-type ATP binding cassette (ABCB) carriers. Here, we report that polar auxin transport in the Arabidopsis thaliana root also requires the action of a Major Facilitator Superfamily (MFS) transporter, Zinc-Induced Facilitator-Like 1 (ZIFL1). Sequencing, promoter-reporter, and fluorescent protein fusion experiments indicate that the full-length ZIFL1.1 protein and a truncated splice isoform, ZIFL1.3, localize to the tonoplast of root cells and the plasma membrane of leaf stomatal guard cells, respectively. Using reverse genetics, we show that the ZIFL1.1 transporter regulates various root auxin-related processes, while the ZIFL1.3 isoform mediates drought tolerance by regulating stomatal closure. Auxin transport and immunolocalization assays demonstrate that ZIFL1.1 indirectly modulates cellular auxin efflux during shootward auxin transport at the root tip, likely by regulating plasma membrane PIN2 abundance. Finally, heterologous expression in yeast revealed that ZIFL1.1 and ZIFL1.3 share H(+)-coupled K(+) transport activity. Thus, by determining the subcellular and tissue distribution of two isoforms, alternative splicing dictates a dual function for the ZIFL1 transporter. We propose that this MFS carrier regulates stomatal movements and polar auxin transport by modulating potassium and proton fluxes in Arabidopsis cells.
Asunto(s)
Adaptación Biológica , Arabidopsis/metabolismo , Sequías , Genes de Plantas , Ácidos Indolacéticos/metabolismo , Estrés Fisiológico , Empalme Alternativo , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Meristema/metabolismo , Estomas de Plantas/genética , Estomas de Plantas/metabolismo , Transpiración de Plantas , Regiones Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Genética InversaRESUMEN
Potassium (K(+)) is an essential mineral nutrient for plant growth and development, with numerous membrane transporters and channels having been implicated in the maintenance and regulation of its homeostasis. The cation cesium (Cs(+)) is toxic for plants but shares similar chemical properties to the K(+) ion and hence competes with its transport. Here, we report that K(+) and Cs(+) homeostasis in Arabidopsis thaliana also requires the action of ZIFL2 (Zinc-Induced Facilitator-Like 2), a member of the Major Facilitator Superfamily (MFS) of membrane transporters. We show that the Arabidopsis ZIFL2 is a functional transporter able to mediate K(+) and Cs(+) influx when heterologously expressed in yeast. Promoter-reporter, reverse transcription-PCR and fluorescent protein fusion experiments indicate that the predominant ZIFL2.1 isoform is targeted to the plasma membrane of endodermal and pericyle root cells. ZIFL2 loss of function and overexpression exacerbate and alleviate plant sensitivity, respectively, upon Cs(+) and excess K(+) supply, also influencing Cs(+) whole-plant partitioning. We propose that the activity of this Arabidopsis MFS carrier promotes cellular K(+) efflux in the root, thereby restricting Cs(+)/K(+) xylem loading and subsequent root to shoot translocation under conditions of Cs(+) or high K(+) external supply.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cesio/metabolismo , Regulación de la Expresión Génica de las Plantas , Potasio/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Membrana Celular/metabolismo , Expresión Génica , Genes Reporteros , Homeostasis , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteínas Recombinantes de Fusión , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Plantones/genética , Plantones/metabolismo , Zinc/metabolismoRESUMEN
OBJECTIVES: The ability of opportunistic pathogenic Candida species to persist and invade specific niches in the human host depends on their resistance to natural growth inhibitors and antifungal therapy. This work describes the role of the Candida glabrata drug:H(+) antiporter CgTpo3 (ORF CAGL0I10384g) in this context. METHODS: Deletion and cloning of CgTPO3 was achieved using molecular biology tools. C. glabrata strain susceptibility was assayed based on growth in liquid and solid media and through MIC determination. Radiolabelled compound accumulation or HPLC were used for the assessment of the role of CgTpo3 as a drug or polyamine transporter. Quantitative RT-PCR was used for expression analysis. RESULTS: CgTpo3 was found to confer resistance to azole drugs in C. glabrata. This protein was found to be localized to the plasma membrane and to decrease the intracellular accumulation of [(3)H]clotrimazole, playing a direct role in its extrusion from pre-loaded C. glabrata cells. CgTPO3 was further found to confer resistance to spermine, complementing the susceptibility phenotypes exhibited by the deletion of its Saccharomyces cerevisiae homologue, TPO3. In spermine-stressed C. glabrata cells, CgTPO3 is transcriptionally activated in a CgPdr1-dependent manner, contributing to a decrease in the intracellular concentration of this polyamine. Clotrimazole exposure was found to lead to the intracellular accumulation of spermine, and pre-exposure to this polyamine was found consistently to lead to increased clotrimazole resistance. CONCLUSIONS: Altogether, these results point to a significant role for CgTpo3 in azole drug resistance and in the tolerance to high polyamine concentrations, such as those found in the urogenital tract.
Asunto(s)
Antiportadores/metabolismo , Azoles/metabolismo , Candida glabrata/metabolismo , Farmacorresistencia Fúngica , Poliaminas/metabolismo , Cromatografía Líquida de Alta Presión , Clonación Molecular , Eliminación de Gen , Perfilación de la Expresión Génica , Homeostasis , Marcaje Isotópico , Pruebas de Sensibilidad Microbiana , Reacción en Cadena en Tiempo Real de la PolimerasaRESUMEN
The presence of toxic compounds derived from biomass pre-treatment in fermentation media represents an important drawback in second-generation bio-ethanol production technology and overcoming this inhibitory effect is one of the fundamental challenges to its industrial production. The aim of this study was to systematically identify, in industrial medium and at a genomic scale, the Saccharomyces cerevisiae genes required for simultaneous and maximal tolerance to key inhibitors of lignocellulosic fermentations. Based on the screening of EUROSCARF haploid mutant collection, 242 and 216 determinants of tolerance to inhibitory compounds present in industrial wheat straw hydrolysate (WSH) and in inhibitor-supplemented synthetic hydrolysate were identified, respectively. Genes associated to vitamin metabolism, mitochondrial and peroxisomal functions, ribosome biogenesis and microtubule biogenesis and dynamics are among the newly found determinants of WSH resistance. Moreover, PRS3, VMA8, ERG2, RAV1 and RPB4 were confirmed as key genes on yeast tolerance and fermentation of industrial WSH.
Asunto(s)
Genes Fúngicos , Microbiología Industrial , Lignina/metabolismo , Saccharomyces cerevisiae/genética , Ácido Acético/toxicidad , Biomasa , Farmacorresistencia Fúngica , Fermentación , Furaldehído/toxicidad , Genoma Fúngico , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico/genética , TriticumRESUMEN
The widespread emergence of antifungal drug resistance poses a severe clinical problem. Though predicted to play a role in this phenomenon, the drug:H(+) antiporters (DHA) of the major facilitator superfamily have largely escaped characterization in pathogenic yeasts. This work describes the first DHA from the pathogenic yeast Candida glabrata reported to be involved in antifungal drug resistance, the C. glabrata QDR2 (CgQDR2) gene (ORF CAGL0G08624g). The expression of CgQDR2 in C. glabrata was found to confer resistance to the antifungal drugs miconazole, tioconazole, clotrimazole, and ketoconazole. By use of a green fluorescent protein (GFP) fusion, the CgQdr2 protein was found to be targeted to the plasma membrane in C. glabrata. In agreement with these observations, CgQDR2 expression was found to decrease the intracellular accumulation of radiolabeled clotrimazole in C. glabrata and to play a role in the extrusion of this antifungal from preloaded cells. Interestingly, the functional heterologous expression of CgQDR2 in the model yeast Saccharomyces cerevisiae further confirmed the role of this gene as a multidrug resistance determinant: its expression was able to complement the susceptibility phenotype exhibited by its S. cerevisiae homologue, QDR2, in the presence of imidazoles and of the antimalarial and antiarrhythmic drug quinidine. In contrast to the findings reported for Qdr2, CgQdr2 expression does not contribute to the ability of yeast to grow under K(+)-limiting conditions. Interestingly, CgQDR2 transcript levels were seen to be upregulated in C. glabrata cells challenged with clotrimazole or quinidine. This upregulation was found to depend directly on the transcription factor CgPdr1, the major regulator of multidrug resistance in this pathogenic yeast, which has also been found to be a determinant of quinidine and clotrimazole resistance in C. glabrata.