Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Gen Med ; 17: 1297-1310, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38590998

RESUMEN

Background: Fungal infections, especially those caused have emerged as a significant medical concern over the past three decades, particularly among immunocompromised patients. However, recent studies have highlighted the increasing prevalence of fungal infections resembling yeast other than Candida, such as trichosporonosis, especially among immunosuppressed individuals worldwide. Trichosporon has been identified as a significant contributor to superficial and invasive infections. Invasive trichosporonosis, primarily affecting immunocompromised patients, poses a significant threat with high mortality rates. Purpose: The current study aimed to explore the clinical epidemiology of Trichosporon spp at King Abdulaziz University Hospital (KAUH) in Saudi Arabia. Methods: This retrospective study aimed to assess the clinical epidemiology of Trichosporon spp. infections in microbiology cultures obtained from KAUH in Saudi Arabia. The study analyzed data from patients over a five-year period, focusing on demographic, clinical, and microbiological characteristics. Results: This study encompassed 21 participants, categorized into four distinct age groups. Moreover, this study indicated T. asahii as the predominant species isolated, accounting for 90.5% of infections, followed by T. mucoides (9.5%). ICU hospitalization, diabetes mellitus, taking immunosuppressive drugs, and antifungal drugs, and the use of invasive medical equipment were identified as prominent risk factors for trichosporonosis. Urinary tract infections were the most common clinical presentation, particularly among male and elderly patients. Mortality rates were high, especially among older individuals. Conclusion: This study contributes valuable epidemiological insights into trichosporonosis, highlighting the need for enhanced surveillance and preventive strategies in healthcare settings. Further research is warranted to optimize treatment approaches and infection control measures, ultimately reducing the burden of Trichosporon infections on patient outcomes.

2.
Heliyon ; 9(1): e13077, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36747932

RESUMEN

Foodborne infections caused by Salmonella spp. are among the most common foodborne diseases in the world. We isolated a lytic phage against extended-spectrum beta-lactam producing S. Enteritidis strain PT1 derived from chicken carcass. Results from electronmicrography indicated that phiPT1 belonged to the family, Siphoviridae, in the order, Caudovirales. Phage phiPT1 was stable at temperatures from 4 °C to 60 °C and inactivated at 90 °C. phiPT1 retained a high titer from pH 4 to pH 10 for at least 1 h. Nevertheless, it displayed a significant decrease (p < 0.05) in titer at pH 11 and 12, with phage titers of 5.5 and 2.4 log10 PFU/mL, respectively. The latent time and burst size of phiPT1 were estimated to be 30 min and 252 PFU/infected cell, respectively. The virulence of phage phiPT1 was evaluated against S. Enteritidis strain PT1 at different MOIs. phiPT1 reduced Salmonella proliferation relative to the negative control (MOI 0) at all MOIs (P < 0.05). However, there is no significant difference among the MOIs (P > 0.05). The phage-antibiotic combination analysis (PAS) indicated that synergism was not detected at higher phiPT1 titer (1012 PFU/mL) with all tested antibiotics at all subinhibitory concentrations. However, synergistic activities were recorded at 0.25 × MIC of four tested antibiotics: cefixime, gentamicin, ciprofloxacin, and aztreonam in combination with phage at 104, 106 and 108 PFU/mL (ΣFIC ≤0.5). Synergism was detected for all antibiotics (0.1 × MIC) except meropenem and colistin in combination with phiPT1 at 104, 106 and 108 PFU/mL (ΣFIC ≤0.5). Synergism also displayed at the lowest concentrations of all antibiotics (0.01 MIC) in combination with phiPT1 at all titers except 1012 PFU/mL. Such characteristic features make phiPT1 to be a potential candidate for therapeutic uses.

3.
Life (Basel) ; 13(2)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36836860

RESUMEN

Microbial pathogens and their virulence factors like biofilms are one of the major factors which influence the disease process and its outcomes. Biofilms are a complex microbial network that is produced by bacteria on any devices and/or biotic surfaces to escape harsh environmental conditions and antimicrobial effects. Due to the natural protective nature of biofilms and the associated multidrug resistance issues, researchers evaluated several natural anti-biofilm agents, including bacteriophages and their derivatives, honey, plant extracts, and surfactants for better destruction of biofilm and planktonic cells. This review discusses some of these natural agents that are being put into practice to prevent biofilm formation. In addition, we highlight bacterial biofilm formation and the mechanism of resistance to antibiotics.

4.
Antibiotics (Basel) ; 12(3)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36978364

RESUMEN

Carbapenem-resistant Pseudomonas aeruginosa (CRPA) poses a serious public health threat in multiple clinical settings. In this study, we detail the isolation of a lytic bacteriophage, vB_PseuP-SA22, from wastewater using a clinical strain of CRPA. Transmission electron microscopy (TEM) analysis identified that the phage had a podovirus morphology, which agreed with the results of whole genome sequencing. BLASTn search allowed us to classify vB_PseuP-SA22 into the genus Bruynoghevirus. The genome of vB_PseuP-SA22 consisted of 45,458 bp of double-stranded DNA, with a GC content of 52.5%. Of all the open reading frames (ORFs), only 26 (44.8%) were predicted to encode certain functional proteins, whereas the remaining 32 (55.2%) ORFs were annotated as sequences coding functionally uncharacterized hypothetical proteins. The genome lacked genes coding for toxins or markers of lysogenic phages, including integrases, repressors, recombinases, or excisionases. The phage produced round, halo plaques with a diameter of 1.5 ± 2.5 mm on the bacterial lawn. The TEM revealed that vB_PseuP-SA22 has an icosahedral head of 57.5 ± 4.5 nm in length and a short, non-contractile tail (19.5 ± 1.4 nm). The phage showed a latent period of 30 min, a burst size of 300 PFU/infected cells, and a broad host range. vB_PseuP-SA22 was found to be stable between 4-60 °C for 1 h, while the viability of the virus was reduced at temperatures above 60 °C. The phage showed stability at pH levels between 5 and 11. vB_PauP-SA22 reduced the number of live bacteria in P. aeruginosa biofilm by almost five logs. The overall results indicated that the isolated phage could be a candidate to control CRPA infections. However, experimental in vivo studies are essential to ensure the safety and efficacy of vB_PauP-SA22 before its use in humans.

5.
Antibiotics (Basel) ; 12(2)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36830292

RESUMEN

Bacteria and their predators, bacteriophages, or phages are continuously engaged in an arms race for their survival using various defense strategies. Several studies indicated that the bacterial immune arsenal towards phage is quite diverse and uses different components of the host machinery. Most studied antiphage systems are associated with phages, whose genomic matter is double-stranded-DNA. These defense mechanisms are mainly related to either the host or phage-derived proteins and other associated structures and biomolecules. Some of these strategies include DNA restriction-modification (R-M), spontaneous mutations, blocking of phage receptors, production of competitive inhibitors and extracellular matrix which prevent the entry of phage DNA into the host cytoplasm, assembly interference, abortive infection, toxin-antitoxin systems, bacterial retrons, and secondary metabolite-based replication interference. On the contrary, phages develop anti-phage resistance defense mechanisms in consortium with each of these bacterial phage resistance strategies with small fitness cost. These mechanisms allow phages to undergo their replication safely inside their bacterial host's cytoplasm and be able to produce viable, competent, and immunologically endured progeny virions for the next generation. In this review, we highlight the major bacterial defense systems developed against their predators and some of the phage counterstrategies and suggest potential research directions.

6.
Microorganisms ; 11(3)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36985326

RESUMEN

The consumer demand for fresh produce (vegetables and fruits) has considerably increased since the 1980s for more nutritious foods and healthier life practices, particularly in developed countries. Currently, several foodborne outbreaks have been linked to fresh produce. The global rise in fresh produce associated with human infections may be due to the use of wastewater or any contaminated water for the cultivation of fruits and vegetables, the firm attachment of the foodborne pathogens on the plant surface, and the internalization of these agents deep inside the tissue of the plant, poor disinfection practices and human consumption of raw fresh produce. Several investigations have been established related to the human microbial pathogens (HMPs) interaction, their internalization, and survival on/within plant tissue. Previous studies have displayed that HMPs are comprised of several cellular constituents to attach and adapt to the plant's intracellular niches. In addition, there are several plant-associated factors, such as surface morphology, nutrient content, and plant-HMP interactions, that determine the internalization and subsequent transmission to humans. Based on documented findings, the internalized HMPs are not susceptible to sanitation or decontaminants applied on the surface of the fresh produce. Therefore, the contamination of fresh produce by HMPs could pose significant food safety hazards. This review provides a comprehensive overview of the interaction between fresh produce and HMPs and reveals the ambiguity of interaction and transmission of the agents to humans.

7.
Biotechnol Genet Eng Rev ; : 1-29, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36927397

RESUMEN

Phage therapy has recently attracted a great deal of attention to counteract the rapid emergence of antibiotic-resistant bacteria. In comparison to monophage therapy, phage cocktails are typically used to treat individual and/or multi-bacterial infections since the bacterial agents are unlikely to become resistant as a result of exposure to multiple phages simultaneously. The bacteriolytic effect of phage cocktails may produce efficient killing effect in comparison to individual phage. However, multiple use of phages (complex cocktails) may lead to undesirable side effects such as dysbiosis, horizontal gene transfer, phage resistance, cross resistance, and/or higher cost of production. Cocktail formulation, therefore, representa compromise between limiting the complexity of the cocktail and achieving substantial bacterial load reduction towards the targeted host organisms. Despite some constraints, the applications of monophage therapy have been well documented in the literature. However, phage cocktails-based approaches and their role for the control of pathogens have not been well investigated. In this review, we discuss the principle of phage cocktail formulations, their optimization strategies, major phage cocktail preparations, and their efficacy in inactivating various food borne bacterial pathogens.

8.
Foods ; 12(9)2023 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-37174295

RESUMEN

Salmonella is one of the most common zoonotic foodborne pathogens and a worldwide public health threat. Salmonella enterica is the most pathogenic among Salmonella species, comprising over 2500 serovars. It causes typhoid fever and gastroenteritis, and the serovars responsible for the later disease are known as non-typhoidal Salmonella (NTS). Salmonella transmission to humans happens along the farm-to-fork continuum via contaminated animal- and plant-derived foods, including poultry, eggs, fish, pork, beef, vegetables, fruits, nuts, and flour. Several virulence factors have been recognized to play a vital role in attaching, invading, and evading the host defense system. These factors include capsule, adhesion proteins, flagella, plasmids, and type III secretion systems that are encoded on the Salmonella pathogenicity islands. The increased global prevalence of NTS serovars in recent years indicates that the control approaches centered on alleviating the food animals' contamination along the food chain have been unsuccessful. Moreover, the emergence of antibiotic-resistant Salmonella variants suggests a potential food safety crisis. This review summarizes the current state of the knowledge on the nomenclature, microbiological features, virulence factors, and the mechanism of antimicrobial resistance of Salmonella. Furthermore, it provides insights into the pathogenesis and epidemiology of Salmonella infections. The recent outbreaks of salmonellosis reported in different clinical settings and geographical regions, including Africa, the Middle East and North Africa, Latin America, Europe, and the USA in the farm-to-fork continuum, are also highlighted.

9.
Biomedicines ; 11(6)2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37371746

RESUMEN

The presence of COVID-19 antibodies in the maternal circulation is assumed to be protective for newborns against SARS-CoV-2 infection. We investigated whether maternal COVID-19 antibodies crossed the transplacental barrier and whether there was any difference in the hematological parameters of neonates born to mothers who recovered from COVID-19 during pregnancy. The cross-sectional study was conducted at the Saidu Group of Teaching Hospitals, located in Swat, Khyber Pakhtunkhwa. After obtaining written informed consent, 115 healthy, unvaccinated mother-neonate dyads were included. A clinical history of COVID-19-like illness, laboratory-confirmed diagnosis, and contact history were obtained. Serum samples from mothers and neonates were tested for SARS-CoV-2 anti-receptor-binding domain (anti-RBD) IgG antibodies. Hematological parameters were assessed with complete blood counts (CBC) and peripheral blood smear examinations. The study population consisted of 115 mothers, with a mean age of 29.44 ± 5.75 years, and most women (68/115 (59.1%)) were between 26 and 35 years of age. Of these mothers, 88/115 (76.5 percent) tested positive for SARS-CoV-2 anti-RBD IgG antibodies, as did 83/115 (72.2 percent) neonatal cord blood samples. The mean levels of SARS-CoV-2 IgG antibodies in maternal and neonatal blood were 19.86 ± 13.82 (IU/mL) and 16.16 ± 12.90 (IU/mL), respectively, indicating that maternal antibodies efficiently crossed the transplacental barrier with an antibody transfer ratio of 0.83. The study found no significant difference in complete blood count (CBC) parameters between seropositive and seronegative mothers, nor between neonates born to seropositive and seronegative mothers.

10.
Trop Med Infect Dis ; 7(11)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36355898

RESUMEN

Non-O157 Shiga toxin-producing Escherichia coli (STEC) are emerging serogroups that often result in diseases ranging from diarrhea to severe hemorrhagic colitis in humans. The most common non-O157 STEC are O26, O45, O103, O111, O121, and O145. These serogroups are known by the name "big six" because they cause severe illness and death in humans and the United States Department of Agriculture declared these serogroups as food contaminants. The lack of fast and efficient diagnostic methods exacerbates the public impact of the disease caused by these serogroups. Numerous outbreaks have been reported globally and most of these outbreaks were caused by ingestion of contaminated food or water as well as direct contact with reservoirs. Livestock harbor a variety of non-O157 STEC serovars that can contaminate meat and dairy products, or water sources when used for irrigation. Hence, effective control and prevention approaches are required to safeguard the public from infections. This review addresses the disease characteristics, reservoirs, the source of infections, the transmission of the disease, and major outbreaks associated with the six serogroups ("big six") of non-O157 STEC encountered all over the globe.

11.
Biotechnol Genet Eng Rev ; : 1-22, 2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36123822

RESUMEN

Bacterial co-infections are typically associated with viral respiratory tract infections and pose a significant public health problem around the world. COVID-19 infection damages tissues lining the respiratory track and regulates immune cells/cytokines leading to microbiome dysbiosis and facilitating the area to be colonized by pathogenic bacterial agents. There have been reports of different types of bacterial co-infection in COVID-19 patients. Some of these reports showed despite geographical differences and differences in hospital settings, bacterial co-infections are a major cause of morbidity and mortality in COVID-19 patients. The inappropriate use of antibiotics for bacterial infections, particularly broad-spectrum antibiotics, can also further complicate the infection process, often leading to multi drug resistance, clinical deterioration, poor prognosis, and eventually death. To this end, researchers must establish a new therapeutic approach to control SARS-CoV-2 and the associated microbial coinfections. Hence, the aim of this review is to highlight the bacterial co-infection that has been recorded in COVID-19 patients and the status of antimicrobial resistance associated with the dual infections.

12.
Pathogens ; 11(12)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36558814

RESUMEN

Salmonella enterica Serovar Typhimurium and Salmonella enterica Serovar Enteritidis are well-known pathogens that cause foodborne diseases in humans. The emergence of antibiotic-resistant Salmonella serovars has caused serious public health problems worldwide. In this study, two lysogenic phages, STP11 and SEP13, were isolated from a wastewater treatment plant in Jeddah, KSA. Transmission electron microscopic images revealed that both phages are new members of the genus "Chivirus" within the family Siphoviridae. Both STP11 and SEP13 had a lysis time of 90 min with burst sizes of 176 and 170 PFU/cell, respectively. The two phages were thermostable (0 °C ≤ temperature < 70 °C) and pH tolerant at 3 ≤ pH < 11. STP11 showed lytic activity for approximately 42.8% (n = 6), while SEP13 showed against 35.7% (n = 5) of the tested bacterial strains. STP11 and STP13 have linear dsDNA genomes consisting of 58,890 bp and 58,893 bp nucleotide sequences with G + C contents of 57% and 56.5%, respectively. Bioinformatics analysis revealed that the genomes of phages STP11 and SEP13 contained 70 and 71 ORFs, respectively. No gene encoding tRNA was detected in their genome. Of the 70 putative ORFs of phage STP11, 27 (38.6%) were assigned to functional genes and 43 (61.4%) were annotated as hypothetical proteins. Similarly, 29 (40.8%) of the 71 putative ORFs of phage SEP13 were annotated as functional genes, whereas the remaining 42 (59.2%) were assigned as nonfunctional proteins. Phylogenetic analysis of the whole genome sequence demonstrated that the isolated phages are closely related to Chi-like Salmonella viruses.

13.
Biosensors (Basel) ; 12(10)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36291042

RESUMEN

Foodborne microorganisms are an important cause of human illness worldwide. Two-thirds of human foodborne diseases are caused by bacterial pathogens throughout the globe, especially in developing nations. Despite enormous developments in conventional foodborne pathogen detection methods, progress is limited by the assay complexity and a prolonged time-to-result. The specificity and sensitivity of assays for live pathogen detection may also depend on the nature of the samples being analyzed and the immunological or molecular reagents used. Bacteriophage-based biosensors offer several benefits, including specificity to their host organism, the detection of only live pathogens, and resistance to extreme environmental factors such as organic solvents, high temperatures, and a wide pH range. Phage-based biosensors are receiving increasing attention owing to their high degree of accuracy, specificity, and reduced assay times. These characteristics, coupled with their abundant supply, make phages a novel bio-recognition molecule in assay development, including biosensors for the detection of foodborne bacterial pathogens to ensure food safety. This review provides comprehensive information about the different types of phage-based biosensor platforms, such as magnetoelastic sensors, quartz crystal microbalance, and electrochemical and surface plasmon resonance for the detection of several foodborne bacterial pathogens from various representative food matrices and environmental samples.


Asunto(s)
Bacteriófagos , Técnicas Biosensibles , Enfermedades Transmitidas por los Alimentos , Humanos , Microbiología de Alimentos , Técnicas Biosensibles/métodos , Enfermedades Transmitidas por los Alimentos/diagnóstico , Enfermedades Transmitidas por los Alimentos/microbiología , Bacterias , Solventes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA