RESUMEN
The interrelationships between air quality, land cover change, and road networks in the Lagos megacity have not been explored. Globally, there are knowledge gaps in understanding these dynamics, especially using remote sensing data. This study used multi-temporal and multi-spectral Landsat imageries at four epochs (2002, 2013, 2015, and 2020) to evaluate the aerosol optical thickness (AOT) levels in relation to land cover and road networks in the Lagos megacity. A look-up table (LUT) was generated using Py6S, a python-based 6S module, to simulate the AOT using land surface reflectance and top of atmosphere reflectance. A comparative assessment of the method against in situ measurements of particulate matter (PM) at different locations shows a strong positive correlation between the imagery-derived AOT values and the PMs. The AOT concentration across the land cover and road networks showed an increasing trend from 2002 to 2020, which could be explained by urbanization in the megacity. The higher concentration of AOT along the major roads is attributed to the high air pollutants released from vehicles, including home/office generators and industries along the road corridors. The continuous rise in pollutant values requires urgent intervention and mitigation efforts. Remote sensing-based AOT monitoring is a possible solution.
Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Monitoreo del Ambiente/métodos , Nigeria , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Aerosoles/análisisRESUMEN
Rapid urbanization has caused severe deterioration of air quality globally, leading to increased hospitalization and premature deaths. Therefore, accurate prediction of air quality is crucial for mitigation planning to support urban sustainability and resilience. Although some studies have predicted air pollutants such as particulate matter (PM) using machine learning algorithms (MLAs), there is a paucity of studies on spatial hazard assessment with respect to the air quality index (AQI). Incorporating PM in AQI studies is crucial because of its easily inhalable micro-size which has adverse impacts on ecology, environment, and human health. Accurate and timely prediction of the air quality index can ensure adequate intervention to aid air quality management. Therefore, this study undertakes a spatial hazard assessment of the air quality index using particulate matter with a diameter of 10 µm or lesser (PM10) in Selangor, Malaysia, by developing four machine learning models: eXtreme Gradient Boosting (XGBoost), random forest (RF), K-nearest neighbour (KNN), and Naive Bayes (NB). Spatially processed data such as NDVI, SAVI, BU, LST, Ws, slope, elevation, and road density was used for the modelling. The model was trained with 70% of the dataset, while 30% was used for cross-validation. Results showed that XGBoost has the highest overall accuracy and precision of 0.989 and 0.995, followed by random forest (0.989, 0.993), K-nearest neighbour (0.987, 0.984), and Naive Bayes (0.917, 0.922), respectively. The spatial air quality maps were generated by integrating the geographical information system (GIS) with the four MLAs, which correlated with Malaysia's air pollution index. The maps indicate that air quality in Selangor is satisfactory and posed no threats to health. Nevertheless, the two algorithms with the best performance (XGBoost and RF) indicate that a high percentage of the air quality is moderate. The study concludes that successful air pollution management policies such as green infrastructure practice, improvement of energy efficiency, and restrictions on heavy-duty vehicles can be adopted in Selangor and other Southeast Asian cities to prevent deterioration of air quality in the future.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Sistemas de Información Geográfica , Teorema de Bayes , Ciudades , Malasia , Crecimiento Sostenible , Contaminación del Aire/análisis , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Aprendizaje Automático , AlgoritmosRESUMEN
Climate change is generally known to impact ozone concentration globally. However, the intensity varies across regions and countries. Therefore, local studies are essential to accurately assess the correlation of climate change and ozone concentration in different countries. This study investigates the effects of climatic variables on ozone concentration in Malaysia in order to understand the nexus between climate change and ozone concentration. The selected data was obtained from ten (10) air monitoring stations strategically mounted in urban-industrial and residential areas with significant emissions of pollutants. Correlation analysis and four machine learning algorithms (random forest, decision tree regression, linear regression, and support vector regression) were used to analyze ozone and meteorological dataset in the study area. The analysis was carried out during the southwest monsoon due to the rise of ozone in the dry season. The results show a very strong correlation between temperature and ozone. Wind speed also exhibits a moderate to strong correlation with ozone, while relative humidity is negatively correlated. The highest correlation values were obtained at Bukit Rambai, Nilai, Jaya II Perai, Ipoh, Klang and Petaling Jaya. These locations have high industries and are well urbanized. The four machine learning algorithms exhibit high predictive performances, generally ascertaining the predictive accuracy of the climatic variables. The random forest outperformed other algorithms with a very high R2 of 0.970, low RMSE of 2.737 and MAE of 1.824, followed by linear regression, support vector regression and decision tree regression, respectively. This study's outcome indicates a linkage between temperature and wind speed with ozone concentration in the study area. An increase of these variables will likely increase the ozone concentration posing threats to lives and the environment. Therefore, this study provides data-driven insights for decision-makers and other stakeholders in ensuring good air quality for sustainable cities and communities. It also serves as a guide for the government for necessary climate actions to reduce the effect of climate change on air pollution and enabling sustainable cities in accordance with the UN's SDGs 13 and 11, respectively.