Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Analyst ; 148(17): 4213-4218, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37539700

RESUMEN

Liquor brewing is a classic solid-substrate fermentation process with a unique brewing microbiome. As one of the most common fungi, Saccharomyces cerevisiae ferments saccharides and has been extensively applied in brewing production. Here, we present the facile fabrication of a selective, sensitive, and integrated fluorescent biosensor for S. cerevisiae detection. The proposed biosensor used aptamer-modified magnetic beads to specifically capture S. cerevisiae, and the enriched fungi were recognized and detected with boronic acid-decorated multivariate metal-organic frameworks. The biosensor allows rapid quantification of S. cerevisiae in the range of 10-106 CFU mL-1, showing excellent specificity and repeatability, and maintaining stable biosensing performance in long-term storage. The analytical ability of the proposed biosensor was successfully verified in distilled yeast and fermented grain samples spiked with S. cerevisiae.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Estructuras Metalorgánicas , Saccharomyces cerevisiae , Ácidos Borónicos , Alérgenos
2.
J Sci Food Agric ; 103(6): 2762-2772, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36220972

RESUMEN

BACKGROUND: Great efforts have been made to improve the oral bioaccessibility of lipophilic ingredients with multi-functionalities. Achieving intestinal delivery of lipophilic ingredients and their encapsulation in micelles composed of bile salts and lipid hydrolysates (i.e. fatty acids) is critical for improving oral bioaccessibility. Therefore, oil-core microcapsules are considered ideal carriers of lipophilic ingredients. Previous studies have reported oil-core/zein-shell microcapsules constructed by a one-step anti-solvent process. Still, its efficacy as an intestinal delivery system was limited because if the porous shell structure. RESULTS: Zein solution was pretreated with ultrasound and tannic acid (TA) cross-linking. Composite oil-core microcapsule (COM) with a compact shell structure was successfully prepared by using modified zein solution in the anti-solvent process. Fourier-transform infrared spectroscopy and circular dichroism analyses indicated that ultrasound and TA synergistically promote the conformational transition of zein from α-helix to ß-sheet and enhance the hydrophobic interactions among protein chains. The above changes contribute to the strengthen of shell zein network. Correspondingly, COM presents superior encapsulation efficiency and environmental stability over the simple oil-core microcapsule (SOM) prepared without the use of ultrasound and TA. Furthermore, antioxidant activity of ß-carotene was well retained during the encapsulation process. In vitro studies indicated that COM was more resistant to digestibility and acid-induced swelling. More than 87% of ß-carotene could be released in the intestine in a sustainable way. The controllable release behavior thus promoted a significant increase in bioaccessibility of ß-carotene encapsulated in COM compared to SOM (85.9% versus 48.5%). CONCLUSION: The COM generated here shows potential for bioaccessibility improvement of lipophilic ingredients. © 2022 Society of Chemical Industry.


Asunto(s)
Zeína , Cápsulas , Zeína/química , beta Caroteno/química , Micelas , Intestinos , Solventes
3.
Compr Rev Food Sci Food Saf ; 22(3): 1902-1932, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36880579

RESUMEN

Non-gene-editing microbiome engineering (NgeME) is the rational design and control of natural microbial consortia to perform desired functions. Traditional NgeME approaches use selected environmental variables to force natural microbial consortia to perform the desired functions. Spontaneous food fermentation, the oldest kind of traditional NgeME, transforms foods into various fermented products using natural microbial networks. In traditional NgeME, spontaneous food fermentation microbiotas (SFFMs) are typically formed and controlled manually by the establishment of limiting factors in small batches with little mechanization. However, limitation control generally leads to trade-offs between efficiency and the quality of fermentation. Modern NgeME approaches based on synthetic microbial ecology have been developed using designed microbial communities to explore assembly mechanisms and target functional enhancement of SFFMs. This has greatly improved our understanding of microbiota control, but such approaches still have shortcomings compared to traditional NgeME. Here, we comprehensively describe research on mechanisms and control strategies for SFFMs based on traditional and modern NgeME. We discuss the ecological and engineering principles of the two approaches to enhance the understanding of how best to control SFFM. We also review recent applied and theoretical research on modern NgeME and propose an integrated in vitro synthetic microbiota model to bridge gaps between limitation control and design control for SFFM.


Asunto(s)
Microbiota , Fermentación , Alimentos , Microbiología de Alimentos
4.
Analyst ; 147(3): 443-449, 2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-34985055

RESUMEN

Urinary tract infections (UTIs) are a severe public health problem caused by mono- or poly-bacteria. Culture-based methods are routinely used for the diagnosis of UTIs in clinical practice, but those are time consuming. Rapid and unambiguous identification of each pathogen in UTIs can have a significant impact on timely diagnoses and precise treatment. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is an alternative method for the identification of pathogens in clinical laboratories. However, a certain number of pure bacteria are required for MALDI-TOF MS analysis. Here, we explored a strategy combining magnetic enrichment and MALDI-TOF MS for the rapid identification of pathogenic bacterial mixtures in urine. Fragment crystallizable mannose-binding lectin-modified Fe3O4 (Fc-MBL@Fe3O4) was used for rapid enrichment and the individual-peak-based similarity model as the analytical tool. Within 30 min, a mixture of the four most prevalent UTI-causing bacteria, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, and Pseudomonas aeruginosa, was successfully identified using this method. This rapid MALDI-TOF MS-based strategy has potential applications in the clinical identification of UTI pathogens.


Asunto(s)
Bacterias , Infecciones Urinarias , Algoritmos , Humanos , Fenómenos Magnéticos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Infecciones Urinarias/diagnóstico
5.
Bioresour Technol ; 403: 130854, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38761866

RESUMEN

The spontaneous solid-state stacking process (SSSP) of Baijiu is an environmentally friendly and cost-effective process for enriching and assembling environmental microorganisms to guarantee the subsequent fermentation efficiency. In this study, how SSSP create spatial heterogeneity of stacking piles were found through spatiotemporal sampling. The degree of difficulty in oxygen exchange categorizes the stacking pile into depleted (≤4%), transitional (4 %-17 %), and enriched (≥17 %) oxygen-defined layers. This results in variation in succession rates (Vdepleted > Vtransitional > Venriched), which accelerates spatial heterogeneity during SSSP. As a dominant species (65 %-99 %) in depleted and transitional layers, Acetilactobacillus jinshanensis can rapidly reduce oxygen disturbance by upregulating poxL and catE, that sustains spatial heterogeneity. The findings demonstrated the value of oxygen control in shaping spatial heterogeneity during SSSP processes, which can create specific functional microbiome. Adding spatial heterogeneity management will help achieve more precise control of such solid-state fermentation systems.


Asunto(s)
Fermentación , Oxígeno , Oxígeno/metabolismo
6.
Int J Biol Macromol ; 243: 125131, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37257525

RESUMEN

The conformational changes in α-amylase induced by different ligands, including metal ions, substrates, and aromatic compounds in liquor production, were systematically studied using spectroscopy. Fluorescence acrylamide quenching analysis showed that the interaction with active metal cations (K+, Na+, and Ca2+) led to higher exposure of the active sites in α-amylase. In contrast, interactions with substrates (soluble starch, amylose, amylopectin, wheat starch, and dextrin) reduced the degree of exposure of active sites, and the conformation of the enzyme became more rigid and compact. Although the interaction with inhibitory metal cations (Mg2+, Zn2+) and aromatic compounds generated in the brewing process (guaiacol, eugenol, thymol, and vanillin) increased the exposure of active site with a relatively low amplitude, it reduced the enzymatic activity. This finding may be due to the overall structure of the enzyme becoming looser. Structural stability showed that the active cations and substrates increased the stability of the secondary structure of the α-amylase backbone, whereas the inhibitory cations and aromatic compounds reduced the stability of the backbone but increased the compact of domain A and B. Enzymatic assays and molecular docking experiments strongly supported these conclusions. The experimental results may provide a valuable reference for controlling related conditions and improving production efficiency.


Asunto(s)
Almidón , alfa-Amilasas , alfa-Amilasas/química , Simulación del Acoplamiento Molecular , Regulación Alostérica , Ligandos , Almidón/química , Metales
7.
Front Nutr ; 10: 1139836, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324728

RESUMEN

Introduction: The special flavor and fragrance of Chinese liquor are closely related to microorganisms in the fermentation starter Daqu. The changes of microbial community can affect the stability of liquor yield and quality. Methods: In this study, we used data-independent acquisition mass spectrometry (DIA-MS) for cohort study of the microbial communities of a total of 42 Daqu samples in six production cycles at different times of a year. The DIA MS data were searched against a protein database constructed by metagenomic sequencing. Results: The microbial composition and its changes across production cycles were revealed. Functional analysis of the differential proteins was carried out and the metabolic pathways related to the differential proteins were explored. These metabolic pathways were related to the saccharification process in liquor fermentation and the synthesis of secondary metabolites to form the unique flavor and aroma in the Chinese liquor. Discussion: We expect that the metaproteome profiling of Daqu from different production cycles will serve as a guide for the control of fermentation process of Chinese liquor in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA