Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Multimed Syst ; 28(6): 2335-2355, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35789785

RESUMEN

Deep learning has demonstrated remarkable performance in the medical domain, with accuracy that rivals or even exceeds that of human experts. However, it has a significant problem that these models are "black-box" structures, which means they are opaque, non-intuitive, and difficult for people to understand. This creates a barrier to the application of deep learning models in clinical practice due to lack of interpretability, trust, and transparency. To overcome this problem, several studies on interpretability have been proposed. Therefore, in this paper, we comprehensively review the interpretability of deep learning in medical diagnosis based on the current literature, including some common interpretability methods used in the medical domain, various applications with interpretability for disease diagnosis, prevalent evaluation metrics, and several disease datasets. In addition, the challenges of interpretability and future research directions are also discussed here. To the best of our knowledge, this is the first time that various applications of interpretability methods for disease diagnosis have been summarized.

2.
IEEE J Biomed Health Inform ; 26(8): 3999-4007, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35420991

RESUMEN

Despite the substantial progress made by deep networks in the field of medical image segmentation, they generally require sufficient pixel-level annotated data for training. The scale of training data remains to be the main bottleneck to obtain a better deep segmentation model. Semi-supervised learning is an effective approach that alleviates the dependence on labeled data. However, most existing semi-supervised image segmentation methods usually do not generate high-quality pseudo labels to expand training dataset. In this paper, we propose a deep semi-supervised approach for liver CT image segmentation by expanding pseudo-labeling algorithm under the very low annotated-data paradigm. Specifically, the output features of labeled images from the pretrained network combine with corresponding pixel-level annotations to produce class representations according to the mean operation. Then pseudo labels of unlabeled images are generated by calculating the distances between unlabeled feature vectors and each class representation. To further improve the quality of pseudo labels, we adopt a series of operations to optimize pseudo labels. A more accurate segmentation network is obtained by expanding the training dataset and adjusting the contributions between supervised and unsupervised loss. Besides, the novel random patch based on prior locations is introduced for unlabeled images in the training procedure. Extensive experiments show our method has achieved more competitive results compared with other semi-supervised methods when fewer labeled slices of LiTS dataset are available.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Aprendizaje Automático Supervisado , Algoritmos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Hígado/diagnóstico por imagen , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA