RESUMEN
INTRODUCTION: It was hypothesized that use of proton beam therapy (PBT) in patients with locally advanced non-small cell lung cancer treated with concurrent chemoradiation and consolidative immune checkpoint inhibition is associated with fewer unplanned hospitalizations compared with intensity-modulated radiotherapy (IMRT). METHODS: Patients with locally advanced non-small cell lung cancer treated between October 2017 and December 2021 with concurrent chemoradiation with either IMRT or PBT ± consolidative immune checkpoint inhibition were retrospectively identified. Logistic regression was used to assess the association of radiation therapy technique with 90-day hospitalization and grade 3 (G3+) lymphopenia. Competing risk regression was used to compare G3+ pneumonitis, G3+ esophagitis, and G3+ cardiac events. Kaplan-Meier method was used for progression-free survival and overall survival. Inverse probability treatment weighting was applied to adjust for differences in PBT and IMRT groups. RESULTS: Of 316 patients, 117 (37%) received PBT and 199 (63%) received IMRT. The PBT group was older (p < .001) and had higher Charlson Comorbidity Index scores (p = .02). The PBT group received a lower mean heart dose (p < .0001), left anterior descending artery V15 Gy (p = .001), mean lung dose (p = .008), and effective dose to immune circulating cells (p < .001). On inverse probability treatment weighting analysis, PBT was associated with fewer unplanned hospitalizations (adjusted odds ratio, 0.55; 95% CI, 0.38-0.81; p = .002) and less G3+ lymphopenia (adjusted odds ratio, 0.55; 95% CI, 0.37-0.81; p = .003). There was no difference in other G3+ toxicities, progression-free survival, or overall survival. CONCLUSIONS: PBT is associated with fewer unplanned hospitalizations, lower effective dose to immune circulating cells and less G3+ lymphopenia compared with IMRT. Minimizing dose to lymphocytes may be warranted, but prospective data are needed.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Quimioradioterapia , Hospitalización , Neoplasias Pulmonares , Terapia de Protones , Radioterapia de Intensidad Modulada , Humanos , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Carcinoma de Pulmón de Células no Pequeñas/terapia , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Radioterapia de Intensidad Modulada/métodos , Radioterapia de Intensidad Modulada/efectos adversos , Femenino , Masculino , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/mortalidad , Anciano , Persona de Mediana Edad , Hospitalización/estadística & datos numéricos , Terapia de Protones/métodos , Terapia de Protones/efectos adversos , Quimioradioterapia/métodos , Quimioradioterapia/efectos adversos , Estudios Retrospectivos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Linfopenia/etiología , Anticuerpos MonoclonalesRESUMEN
A new generation cone-beam computed tomography (CBCT) system with new hardware design and advanced image reconstruction algorithms is available for radiation treatment simulation or adaptive radiotherapy (HyperSight CBCT imaging solution, Varian Medical Systems-a Siemens Healthineers company). This study assesses the CBCT image quality metrics using the criteria routinely used for diagnostic CT scanner accreditation as a first step towards the future use of HyperSight CBCT images for treatment planning and target/organ delineations. Image performance was evaluated using American College of Radiology (ACR) Program accreditation phantom tests for diagnostic computed tomography systems (CTs) and compared HyperSight images with a standard treatment planning diagnostic CT scanner (Siemens SOMATOM Edge) and with existing CBCT systems (Varian TrueBeam version 2.7 and Varian Halcyon version 2.0).⯠Image quality performance for all Varian HyperSight CBCT vendor-provided imaging protocols were assessed using ACR head and body ring CT phantoms, then compared to existing imaging modalities. Image quality analysis metrics included contrast-to-noise (CNR), spatial resolution, Hounsfield number (HU) accuracy, image scaling, and uniformity. All image quality assessments were made following the recommendations and passing criteria provided by the ACR. The Varian HyperSight CBCT imaging system demonstrated excellent image quality, with the majority of vendor-provided imaging protocols capable of passing all ACR CT accreditation standards. Nearly all (8/11) vendor-provided protocols passed ACR criteria using the ACR head phantom, with the Abdomen Large, Pelvis Large, and H&N vendor-provided protocols produced HU uniformity values slightly exceeding passing criteria but remained within the allowable minor deviation levels (5-7 HU maximum differences). Compared to other existing CT and CBCT imaging modalities, both HyperSight Head and Pelvis imaging protocols matched the performance of the SOMATOM CT scanner, and both the HyperSight and SOMATOM CT substantially surpassed the performance of the Halcyon 2.0 and TrueBeam version 2.7 systems. Varian HyperSight CBCT imaging system could pass almost all tests for all vendor-provided protocols using ACR accreditation criteria, with image quality similar to those produced by diagnostic CT scanners and significantly better than existing linac-based CBCT imaging systems.
Asunto(s)
Benchmarking , Tomografía Computarizada de Haz Cónico , Procesamiento de Imagen Asistido por Computador , Aceleradores de Partículas , Fantasmas de Imagen , Planificación de la Radioterapia Asistida por Computador , Humanos , Tomografía Computarizada de Haz Cónico/métodos , Tomografía Computarizada de Haz Cónico/instrumentación , Aceleradores de Partículas/instrumentación , Procesamiento de Imagen Asistido por Computador/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Algoritmos , Radioterapia de Intensidad Modulada/métodos , Dosificación Radioterapéutica , Acreditación , Interpretación de Imagen Radiográfica Asistida por Computador/métodosRESUMEN
BACKGROUND: For lung tumors with large motion amplitudes, the use of proton pencil beam scanning (PBS) can produce large dose errors. In this study, we assess under what circumstances PBS can be used to treat lung cancer patients who exhibit large tumor motion, based on the quantification of tumor motion and the dose interplay. MATERIAL AND METHODS: PBS plans were optimized on average 4DCT datasets using a beam-specific PTV method for 10 consecutive patients with locally advanced non-small-cell-lung-cancer (NSCLC) treated with proton therapy to 6660/180 cGy. End inhalation (CT0) and end exhalation (CT50) were selected as the two extreme scenarios to acquire the relative stopping power ratio difference (Δrsp) for a respiration cycle. The water equivalent difference (ΔWET) per radiological path was calculated from the surface of patient to the iCTV by integrating the Δrsp of each voxel. The magnitude of motion of voxels within the target follows a quasi-Gaussian distribution. A motion index (MI (>5mm WET)), defined as the percentage of target voxels with an absolute integral ΔWET larger than 5 mm, was adopted as a metric to characterize interplay. To simulate the treatment process, 4D dose was calculated by accumulating the spot dose on the corresponding respiration phase to the reference phase CT50 by deformable image registration based on spot timing and patient breathing phase. RESULTS: The study indicated that the magnitude of target underdose in a single fraction plan is proportional to the MI (p < .001), with larger motion equating to greater dose degradation and standard deviations. The target homogeneity, minimum, maximum and mean dose in the 4D dose accumulations of 37 fractions varied as a function of MI. CONCLUSIONS: This study demonstrated that MI can predict the level of dose degradation, which potentially serves as a clinical decision tool to assess whether lung cancer patients are potentially suitable to receive PBS treatment.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Neoplasias Pulmonares/radioterapia , Terapia de Protones/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Artefactos , Fraccionamiento de la Dosis de Radiación , Tomografía Computarizada Cuatridimensional , Humanos , Movimiento (Física) , MovimientoRESUMEN
PURPOSE/OBJECTIVE(S): High-risk neuroblastoma (HR-NBL) requires multimodality treatment, including external beam radiation of the primary tumor site following resection. Radiotherapy planning must take into account motion of the target and adjacent normal anatomy, both of which are poorly understood in the pediatric population, and which may differ significantly from those in adults. METHODS/MATERIALS: We examined 4DCT scans of 15 consecutive pediatric patients treated for HR-NBL, most with tumors in the abdominal cavity. The diaphragm and organs at risk were contoured at full inhale, full exhale, and on free-breathing scans. Maximum displacement of organs between full inhale and full exhale was measured in the anterior, posterior, superior, inferior, left, and right directions, as was displacement of centroids in the A/P, S/I, and L/R axes. Contours on free-breathing scans were compared to those on 4D scans. RESULTS: Maximum displacement was along the S/I axis, with the superior aspects of organs moving more than the inferior, implying organ compression with respiration. Liver and spleen exhibited the largest motion, which correlated strongly with the S/I motion of the diaphragm. The maximum organ motion observed in the abdomen and thorax were 4.5 mm and 7.4 mm, respectively, while maximum diaphragm displacement was 5.7 mm. Overall findings mirrored observations in adults, but with smaller magnitudes, as expected. No consistent margins could be added to the free-breathing scans to encompass the motion determined using 4DCT. CONCLUSIONS: Organ motion within the pediatric abdomen and pelvis is similar to that observed in adults, but with smaller magnitude. Precise margins to accommodate motion are patient-specific, underscoring the need for 4DCT scanning when possible.
Asunto(s)
Tomografía Computarizada Cuatridimensional/métodos , Neuroblastoma/diagnóstico por imagen , Neuroblastoma/radioterapia , Órganos en Riesgo/diagnóstico por imagen , Planificación de la Radioterapia Asistida por Computador/métodos , Niño , Preescolar , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Lactante , Masculino , Movimiento (Física) , Órganos en Riesgo/efectos de la radiación , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos , Respiración , Factores de RiesgoRESUMEN
The aim of this work is to demonstrate the feasibility of using water-equivalent thickness (WET) and virtual proton depth radiographs (PDRs) of intensity corrected cone-beam computed tomography (CBCT) to detect anatomical change and patient setup error to trigger adaptive head and neck proton therapy. The planning CT (pCT) and linear accelerator (linac) equipped CBCTs acquired weekly during treatment of a head and neck patient were used in this study. Deformable image registration (DIR) was used to register each CBCT with the pCT and map Hounsfield units (HUs) from the planning CT (pCT) onto the daily CBCT. The deformed pCT is referred as the corrected CBCT (cCBCT). Two dimensional virtual lateral PDRs were generated using a ray-tracing technique to project the cumulative WET from a virtual source through the cCBCT and the pCT onto a virtual plane. The PDRs were used to identify anatomic regions with large variations in the proton range between the cCBCT and pCT using a threshold of 3 mm relative difference of WET and 3 mm search radius criteria. The relationship between PDR differences and dose distribution is established. Due to weight change and tumor response during treatment, large variations in WETs were observed in the relative PDRs which corresponded spatially with an increase in the number of failing points within the GTV, especially in the pharynx area. Failing points were also evident near the posterior neck due to setup variations. Differences in PDRs correlated spatially to differences in the distal dose distribution in the beam's eye view. Virtual PDRs generated from volumetric data, such as pCTs or CBCTs, are potentially a useful quantitative tool in proton therapy. PDRs and WET analysis may be used to detect anatomical change from baseline during treatment and trigger further analysis in adaptive proton therapy.
Asunto(s)
Tomografía Computarizada de Haz Cónico/métodos , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Neoplasias de Cabeza y Cuello/radioterapia , Procesamiento de Imagen Asistido por Computador/métodos , Terapia de Protones , Agua/química , Neoplasias de Cabeza y Cuello/patología , Humanos , Estadificación de Neoplasias , Aceleradores de Partículas , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodosRESUMEN
In electron and proton radiotherapy, applications of patient-specific electron bolus or proton compensators during radiation treatments are often necessary to accommodate patient body surface irregularities, tissue inhomogeneity, and variations in PTV depths to achieve desired dose distributions. Emerging 3D printing technologies provide alternative fabrication methods for these bolus and compensators. This study investigated the potential of utilizing 3D printing technologies for the fabrication of the electron bolus and proton compensators. Two printing technologies, fused deposition modeling (FDM) and selective laser sintering (SLS), and two printing materials, PLA and polyamide, were investigated. Samples were printed and characterized with CT scan and under electron and proton beams. In addition, a software package was developed to convert electron bolus and proton compensator designs to printable Standard Tessellation Language file format. A phantom scalp electron bolus was printed with FDM technology with PLA material. The HU of the printed electron bolus was 106.5 ± 15.2. A prostate patient proton compensator was printed with SLS technology and polyamide material with -70.1 ± 8.1 HU. The profiles of the electron bolus and proton compensator were compared with the original designs. The average over all the CT slices of the largest Euclidean distance between the design and the fabricated bolus on each CT slice was found to be 0.84 ± 0.45 mm and for the compensator to be 0.40 ± 0.42 mm. It is recommended that the properties of specific 3D printed objects are understood before being applied to radiotherapy treatments.
Asunto(s)
Electrones , Impresión Tridimensional/instrumentación , Protones , Radioterapia Conformacional/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Estudios de Factibilidad , Dispersión de RadiaciónRESUMEN
Head and neck cancers centered at the base of skull are better visualized on MRI than on CT. The purpose of this investigation was to investigate the accuracy of bulk density assignment in head and neck intensity-modulated radiation therapy (IMRT) treatment plan optimization. Our study investigates dose calculation differences between density-assigned MRI and CT, and identifies potential limitations related to dental implants and MRI geometrical distortion in the framework of MRI-only-based treatment planning. Bulk density assignment was performed and applied onto MRI to generate three MRI image sets with increasing levels of heterogeneity for seven patients: 1) MRIW: all water-equivalent; 2) MRIW+B: included bone with density of 1.53 g/cm3; and 3) MRIW+B+A: included bone and air. Using identical planning and optimization parameters, MRI-based IMRT plans were generated and compared to corresponding, forward-calculated, CT-based plans on the basis of target coverage, isodose distributions, and dose-volume histograms (DVHs). Phantom studies were performed to assess the magnitude and spatial dependence of MRI geometrical distortion. MRIW-based dose calculations overestimated target coverage by 16.1%. Segmentation of bone reduced differences to within 2% of the coverage area on the CT-based plan. Further segmentation of air improved conformity near air-tissue interfaces. Dental artifacts caused substantial target coverage overestimation even on MRIW+B+A. Geometrical distortion was less than 1 mm in an imaging volume 20 × 20 × 20 cm3 around scanner isocenter, but up to 4 mm at 17 cm lateral to isocenter. Bulk density assignment in the framework of MRI-only IMRT head and neck treatment planning is a feasible method with certain limitations. Bone and teeth account for the majority of density heterogeneity effects. While soft tissue is well visualized on MRI compared to CT, dental implants may not be visible on MRI and must be identified by other means and assigned appropriate density for accurate dose calculation. Far off-center geometrical distortion of the body contour near the shoulder region is a potential source of dose calculation inaccuracy.
Asunto(s)
Algoritmos , Neoplasias Nasofaríngeas/radioterapia , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Conformacional/métodos , Adulto , Carcinoma , Estudios de Factibilidad , Femenino , Humanos , Masculino , Carcinoma Nasofaríngeo , Reproducibilidad de los Resultados , Sensibilidad y EspecificidadRESUMEN
Objective.Prompt gamma (PG) radiation generated from nuclear reactions between protons and tissue nuclei can be employed for range verification in proton therapy. A typical clinical workflow for PG range verification compares the detected PG profile with a predicted one. Recently, a novel analytical PG prediction algorithm based on the so-called filtering formalism has been proposed and implemented in a research version of RayStation (RaySearch Laboratories AB), which is a widely adopted treatment planning system. This work validates the performance of the filtering PG prediction approach.Approach.The said algorithm is validated against experimental data and benchmarked with another well-established PG prediction algorithm implemented in a MATLAB-based software REGGUI. Furthermore, a new workflow based on several PG profile quality criteria and analytical methods is proposed for data selection. The workflow also calculates sensitivity and specificity information, which can help practitioners to decide on irradiation course interruption during treatment and monitor spot selection at the treatment planning stage. With the proposed workflow, the comparison can be performed on a limited number of selected high-quality irradiation spots without neighbouring-spot aggregation.Main results.The mean shifts between the experimental data and the predicted PG detection (PGD) profiles (ΔPGD) by the two algorithms are estimated to be1.5±2.1mm and-0.6±2.2mm for the filtering and REGGUI prediction methods, respectively. The ΔPGD difference between two algorithms is observed to be consistent with the beam model difference within uncertainty. However, the filtering approach requires a much shorter computation time compared to the REGGUI approach.Significance.The novel filtering approach is successfully validated against experimental data and another widely used PG prediction algorithm. The workflow designed in this work selects spots with high-quality PGD shift calculation results, and performs sensitivity and specificity analyses to assist clinical decisions.
Asunto(s)
Algoritmos , Rayos gamma , Terapia de Protones , Planificación de la Radioterapia Asistida por Computador , Planificación de la Radioterapia Asistida por Computador/métodos , Rayos gamma/uso terapéutico , Terapia de Protones/métodos , Humanos , Programas InformáticosRESUMEN
BACKGROUND: Cyclotron-based proton therapy systems utilize the highest proton energies to achieve an ultra-high dose rate (UHDR) for FLASH radiotherapy. The deep-penetrating range associated with this high energy can be modulated by inserting a uniform plate of proton-stopping material, known as a range shifter, in the beam path at the nozzle to bring the Bragg peak within the target while ensuring high proton transport efficiency for UHDR. Aluminum has been recently proposed as a range shifter material mainly due to its high compactness and its mechanical properties. A possible drawback lies in the fact that aluminum has a larger cross-section of producing secondary neutrons compared to conventional plastic range shifters. Accordingly, an increase in secondary neutron contamination was expected during the delivery of range-modulated FLASH proton therapy, potentially heightening neutron-induced carcinogenic risks to the patient. PURPOSE: We conducted neutron dosimetry using simulations and measurements to evaluate excess dose due to neutron exposure during UHDR proton irradiation with aluminum range shifters compared to plastic range shifters. METHODS: Monte Carlo simulations in TOPAS were performed to investigate the secondary neutron production characteristics with aluminum range shifter during 225 MeV single-spot proton irradiation. The computational results were validated against measurements with a pair of ionization chambers in an out-of-field region ( ≤ $\le$ 30 cm) and with a Proton Recoil Scintillator-Los Alamos rem meter in a far-out-of-field region (0.5-2.5 m). The assessments were repeated with solid water slabs as a surrogate for the conventional range shifter material to evaluate the impact of aluminum on neutron yield. The results were compared with the International Electrotechnical Commission (IEC) standards to evaluate the clinical acceptance of the secondary neutron yield. RESULTS: For a range modulation up to 26 cm in water, the maximum simulated and measured values of out-of-field secondary neutron dose equivalent per therapeutic dose with aluminum range shifter were found to be ( 0.57 ± 0.02 ) mSv/Gy $(0.57\pm 0.02)\ \text{mSv/Gy}$ and ( 0.46 ± 0.04 ) mSv/Gy $(0.46\pm 0.04)\ \text{mSv/Gy}$ , respectively, overall higher than the solid water cases (simulation: ( 0.332 ± 0.003 ) mSv/Gy $(0.332\pm 0.003)\ \text{mSv/Gy}$ ; measurement: ( 0.33 ± 0.03 ) mSv/Gy $(0.33\pm 0.03)\ \text{mSv/Gy}$ ). The maximum far out-of-field secondary neutron dose equivalent was found to be ( 8.8 ± 0.5 $8.8 \pm 0.5$ ) µ Sv / Gy $\umu {\rm Sv/Gy}$ and ( 1.62 ± 0.02 $1.62 \pm 0.02$ ) µ Sv / Gy $\umu {\rm Sv/Gy}$ for the simulations and rem meter measurements, respectively, also higher than the solid water counterparts (simulation: ( 3.3 ± 0.3 $3.3 \pm 0.3$ ) µ Sv / Gy $\umu {\rm Sv/Gy}$ ; measurement: ( 0.63 ± 0.03 $0.63 \pm 0.03$ ) µ Sv / Gy $\umu {\rm Sv/Gy}$ ). CONCLUSIONS: We conducted simulations and measurements of secondary neutron production under proton irradiation at FLASH energy with range shifters. We found that the secondary neutron yield increased when using aluminum range shifters compared to conventional materials while remaining well below the non-primary radiation limit constrained by the IEC regulations.
Asunto(s)
Método de Montecarlo , Neutrones , Terapia de Protones , Radiometría , Terapia de Protones/instrumentación , Radiometría/instrumentación , Radioterapia Conformacional/instrumentación , Radioterapia Conformacional/métodos , Aluminio/química , Dosificación Radioterapéutica , HumanosRESUMEN
PURPOSE: To explore the association of the effective dose to immune cells (EDIC) with disease control, lymphopenia, and toxicity in patients with non-small cell lung cancer (NSCLC) and identify methods to reduce EDIC. METHODS: We abstracted data from all patients with locally advanced NSCLC treated with chemoradiation with or without consolidative immunotherapy over a ten-year period. Associations between EDIC and progression-free survival (PFS) and overall survival (OS) were modeled with Cox proportional hazards and Kaplan-Meier method. Logistic regression was used to model predictors of lymphopenia and higher EDIC. Analyses were performed with EDIC as a continuous and categorical variable. Lymphopenia was graded per CTCAE v5.0. RESULTS: Overall, 786 patients were included (228 of which received consolidative immunotherapy); median EDIC was 4.7 Gy. Patients with EDIC < 4.7 Gy had a longer median PFS (15.3 vs. 9.0 months; p < 0.001) and OS (34.2 vs. 22.4 months; p < 0.001). On multivariable modeling, EDIC correlated with inferior PFS (HR 1.08, 95 % CI 1.01-1.14, p = 0.014) and OS (HR 1.10, 95 % CI 1.04-1.18, p = 0.002). EDIC was predictive of grade 4 lymphopenia (OR 1.16, 95 % CI 1.02-1.33, p = 0.026). EDIC ≥ 4.7 Gy was associated with increased grade 2 + pneumonitis (6-month incidence: 26 % vs 20 %, p = 0.04) and unplanned hospitalizations (90-day incidence: 40 % vs 30 %, p = 0.002). Compared to protons, photon therapy was associated with EDIC ≥ 4.7 Gy (OR 5.26, 95 % CI 3.71-7.69, p < 0.001) in multivariable modeling. CONCLUSIONS: EDIC is associated with inferior disease outcomes, treatment-related toxicity, and the development of severe lymphopenia. Proton therapy is associated with lower EDIC. Further investigations to limit radiation dose to the immune system appear warranted.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Linfopenia , Humanos , Linfopenia/etiología , Quimioradioterapia/efectos adversos , Quimioradioterapia/métodos , Dosis de RadiaciónRESUMEN
PURPOSE: We hypothesized that after adoption of immune checkpoint inhibitor (ICI) consolidation for patients with locally advanced non-small cell lung cancer (LA-NSCLC) receiving concurrent chemoradiation therapy (cCRT), rates of symptomatic pneumonitis would increase, thereby supporting efforts to reduce lung radiation dose. METHODS AND MATERIALS: This single institution, multisite retrospective study included 783 patients with LA-NSCLC treated with definitive cCRT either before introduction of ICI consolidation (pre-ICI era cohort [January 2011-September 2017]; N = 448) or afterward (ICI era cohort [October 2017-December 2021]; N = 335). Primary endpoint was grade ≥2 pneumonitis (G2P) and secondary endpoint was grade ≥3 pneumonitis (G3P), per Common Terminology Criteria for Adverse Events v5.0. Pneumonitis was compared between pre-ICI era and ICI era cohorts using the cumulative incidence function and Gray's test. Inverse probability of treatment weighting (IPTW)-adjusted Fine-Gray models were generated. Logistic models were developed to predict the 1-year probability of G2P as a function of lung dosimetry. RESULTS: G2P was higher in the ICI era than in the pre-ICI era (1-year cumulative incidence 31.4% vs 20.1%; P < .001; IPTW-adjusted multivariable subdistribution hazard ratio, 2.03; 95% confidence interval, 1.53-2.70; P < .001). There was no significant interaction between ICI era treatment and either lung volume receiving ≥20 Gy (V20) or mean lung dose in Fine-Gray regression for G2P; however, the predicted probability of G2P was higher in the ICI era at clinically relevant values of lung V20 (≥24%) and mean lung dose (≥14 Gy). Cut-point analysis revealed a lung V20 threshold of 28% in the ICI era (1-year G2P rate 46.0% above vs 19.8% below; P < .001). Among patients receiving ICI consolidation, lung V5 was not associated with G2P. G3P was not higher in the ICI era (1-year cumulative incidence 7.5% vs 6.0%; P = .39; IPTW-adjusted multivariable subdistribution hazard ratio, 1.12; 95% confidence interval, 0.63-2.01; P = .70). CONCLUSIONS: In patients with LA-NSCLC treated with cCRT, the adoption of ICI consolidation was associated with an increase in G2P but not G3P. With ICI consolidation, stricter lung dose constraints may be warranted.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Neumonía , Neumonitis por Radiación , Humanos , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Neoplasias Pulmonares/radioterapia , Estudios Retrospectivos , Neumonitis por Radiación/etiología , Neumonitis por Radiación/epidemiología , Inmunoterapia/efectos adversosRESUMEN
PURPOSE: We assessed the association of cardiac radiation dose with cardiac events and survival post-chemoradiation therapy (CRT) in patients with locally advanced non-small cell lung cancer (LA-NSCLC) after adoption of modern radiation therapy (RT) techniques, stricter cardiac dose constraints, and immune checkpoint inhibitor (ICI) consolidation. METHODS AND MATERIALS: This single-institution, multi-site retrospective study included 335 patients with LA-NSCLC treated with definitive, concurrent CRT between October 2017 and December 2021. All patients were evaluated for ICI consolidation. Planning dose constraints included heart mean dose < 20 Gy (<10 Gy if feasible) and heart volume receiving ≥ 50 Gy (V50Gy) < 25 %. Twenty-one dosimetric parameters for three different cardiac structures (heart, left anterior descending coronary artery [LAD], and left ventricle) were extracted. Primary endpoint was any major adverse cardiac event (MACE) post-CRT, defined as acute coronary syndrome, heart failure, coronary revascularization, or cardiac-related death. Secondary endpoints were: grade ≥ 3 cardiac events (per CTCAE v5.0), overall survival (OS), lung cancer-specific mortality (LCSM), and other-cause mortality (OCM). RESULTS: Median age was 68 years, 139 (41 %) had baseline coronary heart disease, and 225 (67 %) received ICI consolidation. Proton therapy was used in 117 (35 %) and intensity-modulated RT in 199 (59 %). Median LAD V15Gy was 1.4 % (IQR 0-22) and median heart mean dose was 8.7 Gy (IQR 4.6-14.4). Median follow-up was 3.3 years. Two-year cumulative incidence of MACE was 9.5 % for all patients and 14.3 % for those with baseline coronary heart disease. Two-year cumulative incidence of grade ≥ 3 cardiac events was 20.4 %. No cardiac dosimetric parameter was associated with an increased risk of MACE or grade ≥ 3 cardiac events. On multivariable analysis, cardiac dose (LAD V15Gy and heart mean dose) was associated with worse OS, driven by an association with LCSM but not OCM. CONCLUSIONS: With modern RT techniques, stricter cardiac dose constraints, and ICI consolidation, cardiac dose was associated with LCSM but not OCM or cardiac events in patients with LA-NSCLC.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Enfermedades Cardiovasculares , Enfermedad Coronaria , Neoplasias Pulmonares , Humanos , Anciano , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Estudios Retrospectivos , Dosis de RadiaciónRESUMEN
The correlation between the pancreatic and external abdominal motion due to respiration was investigated on two patients. These studies utilized four dimensional computer tomography (4D CT), a four dimensional (4D) electromagnetic transponder system, and a gating belt system. One 4D CT study was performed during simulation to quantify the pancreatic motion using computer tomography images at eight breathing phases. The motion under free breathing and breath-hold were analyzed for the 4D electromagnetic transponder system and the gating belt system during treatment. A linear curve was fitted for all data sets and correlation factors were evaluated between the 4D electromagnetic transponder system and the gating belt system data. The 4D CT study demonstrated a modest correlation between the external marker and the pancreatic motion with R-square values larger than 0.8 for the inferior-superior (inf-sup). Then, the relative pressure from the belt gating system correlated well with the 4D electromagnetic transponder system's motion in the anterior-posterior (ant-post) and the inf-post directions. These directions have a correlation value of -0.93 and 0.76, while the lateral only had a 0.03 correlation coefficient. Based on our limited study, external surrogates can be used as predictors of the pancreatic motion in the inf-sup and the ant-post directions. Although there is a low correlation on the lateral direction, its motion is significantly shorter. In conclusion, an appropriate treatment delivery can be used for pancreatic cancer when an internal tracking system, such as the 4D electromagnetic transponder system, is unavailable.
Asunto(s)
Fenómenos Electromagnéticos , Tomografía Computarizada Cuatridimensional/métodos , Movimiento , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/patología , Radiografía Abdominal , Respiración , Humanos , Estudios ProspectivosRESUMEN
PURPOSE: The feasibility of machine learning (ML) techniques and their performance compared to the conventional χ2-minimization technique in the context of the proton energy-resolved dose imaging method are presented. MATERIALS AND METHOD: Various geometries resembling a wedge and varying gradients are simulated in GATE to obtain energy-resolved dose functions (ERDF) from proton beams of different energies. These ERDFs are used to predict the WEPL using a conventional technique and other ML-based methods. The results are compared to gain an understanding of the performance of ML models in proton radiography. RESULTS: The results obtained from the χ2-minimization technique indicate that it is robust and more reliable compared to the ML-based techniques. It is also observed that the ML-based techniques did not mitigate the effect of range-mixing but seem to be more affected by it compared to the χ2-minimization technique. Substantial data reduction was required in order to make the results of ML-based methods comparable to that of χ2-minimization. We also note that such data reduction might not be possible in a clinical setting. The only advantage in using the ML-based technique is the computational time required to generate a WEPL map which, in our case study, is 10-30 times shorter than the time required for the conventional χ2-minimization technique. CONCLUSIONS: The first results from this preliminary study indicate that the ML techniques failed to be on par with the conventional χ2-minimization technique in terms of the achievable accuracy in the predictions of WEPL and in the mitigation of range-mixing effects in the WEPL image. Modern strategies like the GAN-based models may be suitable for such applications.
Asunto(s)
Terapia de Protones , Protones , Radiografía , Aprendizaje Automático , Terapia de Protones/métodosRESUMEN
Purpose: Positron emission tomography (PET)/computed tomography (CT) has become a critical tool in clinical oncology with an expanding role in guiding radiation treatment planning. As its application and availability grows, it is increasingly important for practicing radiation oncologists to have a comprehensive understanding of how molecular imaging can be incorporated into radiation planning and recognize its potential limitations and pitfalls. The purpose of this article is to review the major approved positron-emitting radiopharmaceuticals clinically being used today along with the methods used for their integration into radiation therapy including methods of image registration, target delineation, and emerging PET-guided protocols such as biologically-guided radiation therapy and PET-adaptive therapy. Methods and Materials: A review approach was utilized using collective information from a broad review of the existing scientific literature sourced from PubMed search with relevant keywords and input from a multidisciplinary team of experts in medical physics, radiation treatment planning, nuclear medicine, and radiation therapy. Results: A number of radiotracers imaging various targets and metabolic pathways of cancer are now commercially available. PET/CT data can be incorporated into radiation treatment planning through cognitive fusion, rigid registration, deformable registration, or PET/CT simulation techniques. PET imaging provides a number of benefits to radiation planning including improved identification and delineation of the radiation targets from normal tissue, potential automation of target delineation, reduction of intra- and inter-observer variability, and identification of tumor subvolumes at high risk for treatment failure which may benefit from dose intensification or adaptive protocols. However, PET/CT imaging has a number of technical and biologic limitations that must be understood when guiding radiation treatment. Conclusion: For PET guided radiation planning to be successful, collaboration between radiation oncologists, nuclear medicine physicians, and medical physics is essential, as well as the development and adherence to strict PET-radiation planning protocols. When performed properly, PET-based radiation planning can reduce treatment volumes, reduce treatment variability, improve patient and target selection, and potentially enhance the therapeutic ratio accessing precision medicine in radiation therapy.
RESUMEN
PURPOSE: 4D positron emission tomography and computed tomography (PET∕CT) can be used to reduce motion artifacts by correlating the raw PET data with the respiratory cycle. The accuracy of each PET phase is dependent on the reproducibility and consistency of the breathing cycle during acquisition. The objective of this study is to evaluate the impact of breathing amplitude and phase irregularities on the quantitative accuracy of 4D PET standardized uptake value (SUV) measurements. In addition, the magnitude of quantitative errors due to respiratory motion and partial volume error are compared. METHODS: Phantom studies were performed using spheres filled with (18)F ranging from 9 to 47 mm in diameter with background activity. Motion was simulated using patient breathing data. The authors compared the accuracy of SUVs derived from gated PET (4 bins and 8 bins, phase-based) for ideal, average, and highly irregular breathing patterns. RESULTS: Under ideal conditions, gated PET produced SUVs that were within (-5.4 ± 5.3)% of the static phantom measurements averaged across all sphere sizes. With breathing irregularities, the quantitative accuracy of gated PET decreased. Gated PET SUVs (best of 4 bins) were (-9.6 ± 13.0)% of the actual value for an average breather and decreased to (-17.1 ± 10.8)% for a highly irregular breather. Without gating, the differences in the SUV from actual value were (-28.5 ± 18.2)%, (-25.9 ± 14.4)%, and (-27.9 ± 18.2)% for the ideal, average, and highly irregular breather, respectively. CONCLUSIONS: Breathing irregularities reduce the quantitative accuracy of gated PET∕CT. Current gated PET techniques may underestimate the actual lesion SUV due to phase assignment errors. Evaluation of respiratory trace is necessary to assess accuracy of data binning and its effect on 4D PET SUVs.
Asunto(s)
Artefactos , Tomografía Computarizada Cuatridimensional/métodos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagen Multimodal/métodos , Tomografía de Emisión de Positrones , Mecánica Respiratoria , Técnicas de Imagen Sincronizada Respiratorias/métodos , Tomografía Computarizada por Rayos X , Tomografía Computarizada Cuatridimensional/instrumentación , Movimiento (Física) , Imagen Multimodal/instrumentación , Fantasmas de Imagen , Reproducibilidad de los Resultados , Técnicas de Imagen Sincronizada Respiratorias/instrumentación , Sensibilidad y EspecificidadRESUMEN
The recently identified bilateral macroscopic tubarial salivary glands present a potential opportunity for further toxicity mitigation for patients receiving head and neck radiotherapy. Here, we show superior dosimetric sparing of the tubarial salivary glands with proton radiation therapy (PRT) compared to intensity-modulated radiotherapy (IMRT) for patients treated postoperatively for human papillomavirus (HPV)-associated oropharyngeal squamous cell carcinoma (OPSCC). This was a retrospective, single institutional study of all patients treated with adjuvant PRT for HPV-associated OPSCC from 2015 to 2019. Each patient had a treatment-approved, equivalent IMRT plan to serve as a reference. The main end point was dose delivered to the tubarial salivary glands by modality, assessed via a 2-tailed, paired t-test. We also report disease outcomes for the entire cohort, via the Kaplan-Meier method. Sixty-four patients were identified. The mean RT dose to the tubarial salivary glands was 23.6 Gy (95% confidence interval (CI) 21.7 to 25.5) and 30.4 Gy (28.6 to 32.2) for PRT and IMRT plans (p < 0.0001), respectively. With a median follow-up of 25.2 months, the two-year locoregional control, progression-free survival and overall survival were 97.8% (95% CI 85.6% to 99.7%), 94.1% (82.8% to 98.1%) and 98.1% (87.4% to 99.7%), respectively. Our study suggests that meaningful normal tissue sparing of the recently identified tubarial salivary glands is achievable with PRT. The apparent gains with PRT did not impact disease outcomes, with only 1 observed locoregional recurrence (0 local, 1 regional). Further studies are warranted to explore the impact of the improved dosimetric sparing of the tubarial salivary glands conveyed by PRT on patient toxicity and quality of life.
Asunto(s)
Carcinoma de Células Escamosas/radioterapia , Neoplasias de Cabeza y Cuello/radioterapia , Terapia de Protones/efectos adversos , Radioterapia de Intensidad Modulada/métodos , Glándulas Salivales , Xerostomía , Estudios de Cohortes , Humanos , Calidad de Vida , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada/efectos adversos , Estudios Retrospectivos , Glándulas Salivales/patología , Glándulas Salivales/efectos de la radiación , Xerostomía/etiología , Xerostomía/prevención & controlRESUMEN
Purpose: One significant advantage of proton therapy is its ability to improve normal tissue sparing and toxicity mitigation, which is relevant in the treatment of oropharyngeal squamous cell carcinoma (OPSCC). Here, we report our institutional experience and dosimetric results with adjuvant proton radiation therapy (PRT) versus intensity-modulated radiotherapy (IMRT) for Human Papilloma Virus (HPV)-associated OPSCC. Materials and Methods: This was a retrospective, single institutional study of all patients treated with adjuvant PRT for HPV-associated OPSCC from 2015 to 2019. Each patient had a treatment-approved equivalent IMRT plan to serve as a reference. Endpoints included dosimetric outcomes to the organs at risk (OARs), local regional control (LRC), progression-free survival (PFS), and overall survival (OS). Descriptive statistics, a 2-tailed paired t test for dosimetric comparisons, and the Kaplan-Meier method for disease outcomes were used. Results: Fifty-three patients were identified. Doses delivered to OARs compared favorably for PRT versus IMRT, particularly for the pharyngeal constrictors, esophagus, larynx, oral cavity, and submandibular and parotid glands. The achieved normal tissue sparing did not negatively impact disease outcomes, with 2-year LRC, PFS, and OS of 97.0%, 90.3%, and 97.5%, respectively. Conclusion: Our study suggests that meaningful normal tissue sparing in the postoperative setting is achievable with PRT, without impacting disease outcomes.
RESUMEN
PURPOSE: Although dose de-escalation is one proposed strategy to mitigate long-term toxicity in human papillomavirus associated oropharyngeal cancer, applying more stringent normal tissue constraints may be a complementary approach to further reduce toxicity. Our study demonstrates that in a postoperative setting, improving upon nationally accepted constraints is achievable and leads to reductions in normal tissue complication probabilities (NTCP) without compromising disease control. METHODS AND MATERIALS: We identified 92 patients at our institution between 2015 and 2019 with p16+ oropharyngeal cancer who were treated with adjuvant volumetric modulated arc therapy. We included patients treated to postoperative doses and standard volumes (including bilateral neck). Doses delivered to organs at risk were compared with recommended dose constraints from a recent cooperative group head and neck cancer trial of radiation therapy to 60 Gy. We applied validated and published NTCP models for dysphagia, dysgeusia, esophagitis, oral mucositis, and xerostomia relevant to oropharyngeal cancer. RESULTS: Achievable and delivered mean doses to most normal head and neck tissues were well below national recommended constraints. This translates to notable absolute NTCP reductions for salivary flow (10% improvement in contralateral parotid, 35% improvement in submandibular gland), grade ≥ 2 esophagitis (23% improvement), grade ≥ 3 mucositis (17% improvement), dysgeusia (10% improvement), and dysphagia (8% improvement). Locoregional control at a median follow-up of 26.3 months was 96.7%, with only 3 patients experiencing locoregional recurrence (1 local, 2 regional). CONCLUSIONS: Modern radiation therapy planning techniques allow for improved normal tissue sparing compared with currently established dose constraints without compromising disease control. These improvements may lead to reduced toxicity in a patient population expected to have favorable long-term outcomes. Stricter constraints can be easily achieved and should be used in conjunction with other evolving efforts to mitigate toxicity.
Asunto(s)
Trastornos de Deglución , Esofagitis , Neoplasias de Cabeza y Cuello , Neoplasias Orofaríngeas , Radioterapia de Intensidad Modulada , Trastornos de Deglución/etiología , Disgeusia/complicaciones , Esofagitis/etiología , Neoplasias de Cabeza y Cuello/complicaciones , Humanos , Neoplasias Orofaríngeas/radioterapia , Glándula Parótida , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/efectos adversos , Radioterapia de Intensidad Modulada/métodosRESUMEN
Development of a PET system capable of in-situ imaging requires a design that can accommodate the proton treatment beam nozzle. Among the several PET instrumentation approaches developed thus far, the dual-panel PET scanner is often used as it is simpler to develop and integrate within the proton therapy gantry. Partial-angle coverage of these systems can however lead to limited-angle artefacts in the reconstructed PET image. We have previously demonstrated via simulations that time-of-flight (TOF) reconstruction reduces the artifacts accompanying limited-angle data, and permits proton range measurement with 1-2 mm accuracy and precision. In this work we show measured results from a small proof-of-concept dual-panel PET system that uses TOF information to reconstruct PET data acquired after proton irradiation. The PET scanner comprises of two detector modules, each comprised of an array of 4×4×30 mm3 lanthanum bromide scintillator. Measurements are performed with an oxygen-rich gel-water, an adipose tissue equivalent material, and in vitro tissue phantoms. For each phantom measurement, 2 Gy dose was deposited using 54 - 100 MeV proton beams. For each phantom, a Monte Carlo simulation generating the expected distribution of PET isotope from the corresponding proton irradiation was also performed. Proton range was calculated by drawing multiple depth-profiles over a central region encompassing the proton dose deposition. For each profile, proton range was calculated using two techniques (a) 50% pick-off from the distal edge of the profile, and (b) comparing the measured and Monte Carlo profile to minimize the absolute sum of differences over the entire profile. A 10 min PET acquisition acquired with minimal delay post proton-irradiation is compared with a 10 min PET scan acquired after a 20 min delay. Measurements show that PET acquisition with minimal delay is necessary to collect 15O signal, and maximize 11C signal collection with a short PET acquisition. In comparison with the 50% pick-off technique, the shift technique is more robust and offers better precision in measuring the proton range for the different phantoms. Range measurements from PET images acquired with minimal delay, and the shift technique demonstrate the ability to achieve <1.5 mm accuracy and precision in estimating proton range.