Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Med Virol ; 95(2): e28520, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36691929

RESUMEN

Pteropine orthoreovirus (PRV), an emerging bat-borne virus, has been linked to cases of acute respiratory infections (ARI) in humans. The prevalence, epidemiology and genomic diversity of PRV among ARI of unknown origin were studied. Among 632 urban outpatients tested negative for all known respiratory viruses, 2.2% were PRV-positive. Patients mainly presented with moderate to severe forms of cough, sore throat and muscle ache, but rarely with fever. Phylogenetic analysis revealed that over 90% of patients infected with the Melaka virus (MelV)-like PRV, while one patient infected with the Pulau virus previously found only in fruit bats. Human oral keratinocytes and nasopharyngeal epithelial cells were susceptible to clinical isolates of PRV, including the newly isolated MelV-like 12MYKLU1034. Whole genome sequence of 12MYKLU1034 using Nanopore technique revealed a novel reassortant strain. Evolutionary analysis of the global PRV strains suggests the continuous evolution of PRV through genetic reassortment among PRV strains circulating in human, bats and non-human primate hosts, creating a spectrum of reassortant lineages with complex evolutionary characteristics. In summary, the role of PRV as a common etiologic agent of ARI is evident. Continuous monitoring of PRV prevalence, pathogenicity and diversity among human and animal hosts is important to trace the emergence of novel reassortants.


Asunto(s)
Quirópteros , Orthoreovirus , Infecciones por Reoviridae , Infecciones del Sistema Respiratorio , Animales , Humanos , Malasia , Filogenia , Genoma Viral , ARN Viral/genética , Orthoreovirus/genética , Genómica
2.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35806276

RESUMEN

Boesenbergia rotunda (Zingiberaceae), is a high-value culinary and ethno-medicinal plant of Southeast Asia. The rhizomes of this herb have a high flavanone and chalcone content. Here we report the genome analysis of B. rotunda together with a complete genome sequence as a hybrid assembly. B. rotunda has an estimated genome size of 2.4 Gb which is assembled as 27,491 contigs with an N50 size of 12.386 Mb. The highly heterozygous genome encodes 71,072 protein-coding genes and has a 72% repeat content, with class I TEs occupying ~67% of the assembled genome. Fluorescence in situ hybridization of the 18 chromosome pairs at the metaphase showed six sites of 45S rDNA and two sites of 5S rDNA. An SSR analysis identified 238,441 gSSRs and 4604 EST-SSRs with 49 SSR markers common among related species. Genome-wide methylation percentages ranged from 73% CpG, 36% CHG and 34% CHH in the leaf to 53% CpG, 18% CHG and 25% CHH in the embryogenic callus. Panduratin A biosynthetic unigenes were most highly expressed in the watery callus. B rotunda has a relatively large genome with a high heterozygosity and TE content. This assembly and data (PRJNA71294) comprise a source for further research on the functional genomics of B. rotunda, the evolution of the ginger plant family and the potential genetic selection or improvement of gingers.


Asunto(s)
Zingiber officinale , Zingiberaceae , Vías Biosintéticas , ADN Ribosómico , Flavonoides , Zingiber officinale/genética , Hibridación Fluorescente in Situ , Repeticiones de Microsatélite/genética , Zingiberaceae/genética
3.
Chromosoma ; 122(3): 233-41, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23525657

RESUMEN

Artificial minichromosomes are highly desirable tools for basic research, breeding, and biotechnology purposes. We present an option to generate plant artificial minichromosomes via de novo engineering of plant centromeres in Arabidopsis thaliana by targeting kinetochore proteins to tandem repeat arrays at non-centromeric positions. We employed the bacterial lactose repressor/lactose operator system to guide derivatives of the centromeric histone H3 variant cenH3 to LacO operator sequences. Tethering of cenH3 to non-centromeric loci led to de novo assembly of kinetochore proteins and to dicentric carrier chromosomes which potentially form anaphase bridges. This approach will be further developed and may contribute to generating minichromosomes from preselected genomic regions, potentially even in a diploid background.


Asunto(s)
Arabidopsis/genética , Centrómero/genética , Secuencias Repetidas en Tándem , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Centrómero/metabolismo , Cromosomas de las Plantas/genética , Cromosomas de las Plantas/metabolismo , Ingeniería Genética , Histonas/genética , Histonas/metabolismo
4.
PeerJ ; 12: e17285, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38708359

RESUMEN

Background: Waterlogging poses a significant threat to plant growth and yield worldwide. Identifying the genes responsible for mitigating waterlogging stress is crucial. Ethylene-responsive factors (ERFs) are transcriptional regulators that respond to various biotic and abiotic stresses in plants. However, their roles and involvement in responding to waterlogging stress remain largely unexplored. Hence, this study aimed to elucidate the role of ERFs in enhancing banana plant resilience to waterlogging. Methods: We hypothesized that introducing a group VII ERF transcription factor in Arabidopsis could enhance waterlogging stress tolerance. To test this hypothesis, we isolated MaERFVII3 from banana roots, where it exhibited a significant induction in response to waterlogging stress. The isolated MaERFVII3 was introduced into Arabidopsis plants for functional gene studies. Results: Compared with wild-type plants, the MaERFVII3-expressing Arabidopsis showed increased survival and biomass under waterlogging stress. Furthermore, the abundance of transcripts related to waterlogging and hypoxia response showed an elevation in transgenic plants but a decrease in wild-type and empty vector plants when exposed to waterlogging stress. Our results demonstrate the significant contribution of MaERFVII3 to waterlogging tolerance in Arabidopsis, providing baseline data for further exploration and potentially contributing to crop improvement programs.


Asunto(s)
Musa , Proteínas de Plantas , Plantas Modificadas Genéticamente , Estrés Fisiológico , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Musa/genética , Musa/crecimiento & desarrollo , Musa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Agua/metabolismo
5.
Chromosoma ; 121(2): 181-90, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22080935

RESUMEN

Engineered minichromosomes offer an enormous opportunity to plant biotechnology as they have the potential to simultaneously transfer and stably express multiple genes. Following a top-down approach, we truncated endogenous chromosomes in barley (Hordeum vulgare) by Agrobacterium-mediated transfer of T-DNA constructs containing telomere sequences. Blocks of Arabidopsis-like telomeric repeats were inserted into a binary vector suitable for stable transformation. After transfer of these constructs into immature embryos of diploid and tetraploid barley, chromosome truncation by T-DNA-induced de novo formation of telomeres could be confirmed by fluorescent in situ hybridisation, primer extension telomere repeat amplification and DNA gel blot analysis in regenerated plants. Telomere seeding connected to chromosome truncation was found in tetraploid plants only, indicating that genetic redundancy facilitates recovery of shortened chromosomes. Truncated chromosomes were transmissible in sexual reproduction, but were inherited at rates lower than expected according to Mendelian rules.


Asunto(s)
Cromosomas de las Plantas/genética , Técnicas de Transferencia de Gen , Ingeniería Genética/métodos , Hordeum/genética , Telómero/genética , Agrobacterium , Cartilla de ADN/genética , ADN Bacteriano/genética , Hibridación Fluorescente in Situ , Plásmidos/genética , Reacción en Cadena de la Polimerasa , Transformación Genética/genética
6.
Gene ; 878: 147579, 2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37336274

RESUMEN

Drought is a major abiotic stress that influences rice production. Although the transcriptomic data of rice against drought is widely available, the regulation of small open reading frames (sORFs) in response to drought stress in rice is yet to be investigated. Different levels of drought stress have different regulatory mechanisms in plants. In this study, drought stress was imposed on four-leaf stage rice, divided into two treatments, 40% and 30% soil moisture content (SMC). The RNAs of the samples were extracted, followed by the RNA sequencing analysis on their sORF expression changes under 40%_SMC and 30%_SMC, and lastly, the expression was validated through NanoString. A total of 122 and 143 sORFs were differentially expressed (DE) in 40%_SMC and 30%_SMC, respectively. In 40%_SMC, 69 sORFs out of 696 (9%) DEGs were found to be upregulated. On the other hand, 69 sORFs out of 449 DEGs (11%) were significantly downregulated. The trend seemed to be higher in 30%_SMC, where 112 (12%) sORFs were found to be upregulated from 928 significantly upregulated DEGs. However, only 8% (31 sORFs out of 385 DEGs) sORFs were downregulated in 30%_SMC. Among the identified sORFs, 110 sORFs with high similarity to rice proteome in the PsORF database were detected in 40%_SMC, while 126 were detected in 30%_SMC. The Gene Ontology (GO) enrichment analysis of DE sORFs revealed their involvement in defense-related biological processes, such as defense response, response to biotic stimulus, and cellular homeostasis, whereas enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways indicated that DE sORFs were associated with tryptophan and phenylalanine metabolisms. Several DE sORFs were identified, including the top five sORFs (OsisORF_3394, OsisORF_0050, OsisORF_3007, OsisORF_6407, and OsisORF_7805), which have yet to be characterised. Since these sORFs were responsive to drought stress, they might hold significant potential as targets for future climate-resilient rice development.


Asunto(s)
Oryza , Transcriptoma , Transcriptoma/genética , Oryza/genética , Oryza/metabolismo , Sequías , Sistemas de Lectura Abierta/genética , Perfilación de la Expresión Génica , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
7.
Plant J ; 68(1): 28-39, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21745249

RESUMEN

Minichromosomes possess functional centromeres and telomeres and thus should be stably inherited. They offer an enormous opportunity to plant biotechnology as they have the potential to simultaneously transfer and stably express multiple genes. Segregating independently of host chromosomes, they provide a platform for accelerating plant breeding. Following a top-down approach, we truncated endogenous chromosomes in Arabidopsis thaliana by Agrobacterium-mediated transfer of T-DNA constructs containing telomere sequences. Blocks of A. thaliana telomeric repeats were inserted into a binary vector suitable for stable transformation. After transfer of these constructs into the natural tetraploid A. thaliana accession Wa-1, chromosome truncation by T-DNA-induced de novo formation of telomeres could be confirmed by DNA gel blot analysis, PCR (polymerase chain reaction), and fluorescence in situ hybridisation. The addition of new telomere repeats in this process could start alternatively from within the T-DNA-derived telomere repeats or from adjacent sequences close to the right border of the T-DNA. Truncated chromosomes were transmissible in sexual reproduction, but were inherited at rates lower than expected according to Mendelian rules.


Asunto(s)
Arabidopsis/genética , Inestabilidad Cromosómica/genética , Cromosomas de las Plantas/genética , Telómero/metabolismo , Secuencias Repetidas Terminales/genética , Agrobacterium , Aneuploidia , Centrómero/metabolismo , Segregación Cromosómica/genética , Cromosomas Artificiales/genética , Cromosomas de las Plantas/metabolismo , ADN Bacteriano , ADN de Plantas/genética , Técnicas de Transferencia de Gen , Hibridación Fluorescente in Situ , Modelos Moleculares , Datos de Secuencia Molecular , Plantas Modificadas Genéticamente , Plásmidos , Transformación Genética
8.
J Vis Exp ; (188)2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36342167

RESUMEN

Circular RNAs (circRNAs) are a class of non-coding RNAs that are formed via back-splicing. These circRNAs are predominantly studied for their roles as regulators of various biological processes. Notably, emerging evidence demonstrates that host circRNAs can be differentially expressed (DE) upon infection with pathogens (e.g., influenza and coronaviruses), suggesting a role for circRNAs in regulating host innate immune responses. However, investigations on the role of circRNAs during pathogenic infections are limited by the knowledge and skills required to carry out the necessary bioinformatic analysis to identify DE circRNAs from RNA sequencing (RNA-seq) data. Bioinformatics prediction and identification of circRNAs is crucial before any verification, and functional studies using costly and time-consuming wet-lab techniques. To solve this issue, a step-by-step protocol of in silico prediction and characterization of circRNAs using RNA-seq data is provided in this manuscript. The protocol can be divided into four steps: 1) Prediction and quantification of DE circRNAs via the CIRIquant pipeline; 2) Annotation via circBase and characterization of DE circRNAs; 3) CircRNA-miRNA interaction prediction through Circr pipeline; 4) functional enrichment analysis of circRNA parental genes using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). This pipeline will be useful in driving future in vitro and in vivo research to further unravel the role of circRNAs in host-pathogen interactions.


Asunto(s)
MicroARNs , ARN Circular , ARN Circular/genética , Análisis de Secuencia de ARN , MicroARNs/genética , Biología Computacional/métodos , Interacciones Huésped-Patógeno/genética , Perfilación de la Expresión Génica/métodos
9.
Plants (Basel) ; 11(15)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35956531

RESUMEN

Flooding caused or exacerbated by climate change has threatened plant growth and food production worldwide. The lack of knowledge on how crops respond and adapt to flooding stress imposes a major barrier to enhancing their productivity. Hence, understanding the flooding-responsive mechanisms of crops is indispensable for developing new flooding-tolerant varieties. Here, we examined the banana (Musa acuminata cv. Berangan) responses to soil waterlogging for 1, 3, 5, 7, 14, and 24 days. After waterlogging stress, banana root samples were analyzed for their molecular and biochemical changes. We found that waterlogging treatment induced the formation of adventitious roots and aerenchyma with conspicuous gas spaces. In addition, the antioxidant activities, hydrogen peroxide, and malondialdehyde contents of the waterlogged bananas increased in response to waterlogging stress. To assess the initial response of bananas toward waterlogging stress, we analyzed the transcriptome changes of banana roots. A total of 3508 unigenes were differentially expressed under 1-day waterlogging conditions. These unigenes comprise abiotic stress-related transcription factors, such as ethylene response factors, basic helix-loop-helix, myeloblastosis, plant signal transduction, and carbohydrate metabolisms. The findings of the study provide insight into the complex molecular events of bananas in response to waterlogging stress, which could later help develop waterlogging resilient crops for the future climate.

10.
3 Biotech ; 12(5): 123, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35547011

RESUMEN

A novel glufosinate-tolerant Pseudomonas sp. LA21, was isolated from soil samples of an oil palm plantation with a long history of glufosinate application. The genome of Pseudomonas sp. LA21 was sequenced with 150 bp paired-end conducted using Illumina sequencing technology. De novo genome assembly was performed using SPAdes, ABySS, and Velvet assemblers. Phylogenetic analysis using 16S rRNA gene sequence showed that Pseudomonas sp. LA21 was closely related to Pseudomonas nitroreducens ATCC 33634. Multilocus sequence analysis (MLSA) based on four bacterial housekeeping genes (16S rRNA, gyr B, rpo B, and rpo D) was conducted together with 138 reference genomes of Pseudomonas species. The phylogenetic tree derived from MLSA analysis using concatenated 16S rRNA-gryB-rpoD-rpoB sequences grouped Pseudomonas sp. LA21 under Pseudomonas aeruginosa group and Pseudomonas nitroreducens subgroup. Detailed phylogenomic analysis using average nucleotide identity (ANI) and genome-to-genome distance calculator (GGDC) approaches showed that Pseudomonas sp. LA21 could be classified as a novel Pseudomonas species. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03185-4.

11.
3 Biotech ; 12(3): 76, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35251879

RESUMEN

Gene prediction is a laborious and time-consuming task. The advancement of sequencing technologies and bioinformatics tools, coupled with accelerated rate of ribosome profiling and mass spectrometry development, have made identification of small open reading frames (sORFs) (< 100 codons) in various plant genomes possible. The past 50 years have seen sORFs being isolated from many organisms. However, to date, a comprehensive sORF annotation pipeline is as yet unavailable, hence, addressed in our review. Here, we also provide current information on classification and functions of plant sORFs and their potential applications in crop improvement programs.

12.
Plants (Basel) ; 11(15)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35956438

RESUMEN

Cucumis debilis W.J.de Wilde & Duyfjes is an annual and monoecious plant. This species is endemic to Southeast Asia, particularly Vietnam. However, C. debilis is rarely studied, and no detailed information is available regarding its basic chromosome number, 45S ribosomal DNA (rDNA) status, and divergence among other Cucumis species. In this study, we characterized the morphological characters and determined and investigated the basic chromosome number and chromosomal distribution of 45S rDNA of C. debilis using the fluorescent in situ hybridization (FISH) technique. A maximum likelihood tree was constructed by combining the chloroplast and internal transcribed spacer of 45S rDNAs to infer its relationship within Cucumis. C. debilis had an oval fruit shape, green fruit peel, and protrusion-like white spots during the immature fruit stage. FISH analysis using 45S rDNA probe showed three pairs of 45S rDNA loci located at the terminal region in C. debilis, similar to C. hystrix. Meanwhile, two, two, and five pairs of 45S rDNA loci were observed for C. melo, C. metuliferus, and C. sativus, respectively. One melon (P90) and cucumber accessions exhibited different chromosomal localizations compared with other members of Cucumis. The majority of Cucumis species showed the terminal location of 45S rDNA, but melon P90 and cucumber exhibited terminal-interstitial and all interstitial orientations of 45S rDNA loci. Based on molecular cytogenetics and phylogenetic evidence, C. debilis is more closely related to cucumber than melon. Therefore, C. debilis may serve as a potential parental accession for genetic improvement of cucumber through interspecific hybridization.

13.
Sci Rep ; 11(1): 7160, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33785802

RESUMEN

Although plants and animals are evolutionarily distant, the structure and function of their chromosomes are largely conserved. This allowed the establishment of a human-Arabidopsis hybrid cell line in which a neo-chromosome was formed by insertion of segments of Arabidopsis chromosomes into human chromosome 15. We used this unique system to investigate how the introgressed part of a plant genome was maintained in human genetic background. The analysis of the neo-chromosome in 60- and 300-day-old cell cultures by next-generation sequencing and molecular cytogenetics suggested its origin by fusion of DNA fragments of different sizes from Arabidopsis chromosomes 2, 3, 4, and 5, which were randomly intermingled rather than joined end-to-end. The neo-chromosome harbored Arabidopsis centromeric repeats and terminal human telomeres. Arabidopsis centromere wasn't found to be functional. Most of the introgressed Arabidopsis DNA was eliminated during the culture, and the Arabidopsis genome in 300-day-old culture showed significant variation in copy number as compared with the copy number variation in the 60-day-old culture. Amplified Arabidopsis centromere DNA and satellite repeats were localized at particular loci and some fragments were inserted into various positions of human chromosome. Neo-chromosome reorganization and behavior in somatic cell hybrids between the plant and animal kingdoms are discussed.


Asunto(s)
Cromosomas Artificiales/genética , Cromosomas Humanos Par 15/genética , Cromosomas de las Plantas/genética , Introgresión Genética , Células Híbridas , Arabidopsis , Técnicas de Cultivo de Célula/métodos , Línea Celular , Humanos , Secuenciación Completa del Genoma
14.
3 Biotech ; 10(4): 183, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32257739

RESUMEN

5-Enolpyruvylshikimate 3-phosphate synthase (EPSPS) is the primary target for the broad-spectrum herbicide, glyphosate. Improvement of EPSPS gene for high level of glyphosate tolerance is important to generate glyphosate-tolerant crops. In this study, we report the isolation and characterization of EPSPS genes of glyphosate-tolerant Pseudomonas nitroreducens strains FY43 and FY47. Both P. nitroreducens strains FY43 and FY47, which showed glyphosate tolerance up to 8.768% (518.4 mM, 32 × higher than field application), were isolated from soil samples collected from oil palm plantation with a long history of glyphosate application. The glyphosate tolerance property of EPSPS genes of strains FY43 and FY47 was functionally characterized by expressing the genes in Escherichia coli strain BL21(DE3). Error-prone PCR was performed to mutagenize native EPSPS gene of strains FY43 and FY47. Ten mutagenized EPSPS with amino acid changes (R21C, N265S, A329T, P71L, T258A, L184F, G292C, G292S, L35F and A242V) were generated through error-prone PCR. Both native and mutated EPSPS genes of strains FY43 and FY47 were introduced into Escherichia coli strain BL21(DE3) and transformants were selected on basal salt medium supplemented with 8.768% (518.4 mM) glyphosate. Mutants with mutations (R21C, N265S, A329T, P71L, T258A, L35F, A242V, L184F and G292C) showed sensitivity to 8.768% glyphosate, whereas glyphosate tolerance for mutant with G292S mutation was not affected by the mutation.

15.
PLoS One ; 15(1): e0227578, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31945109

RESUMEN

Centromeres are prerequisite for accurate segregation and are landmarks of primary constrictions of metaphase chromosomes in eukaryotes. In melon, high-copy-number satellite DNAs (SatDNAs) were found at various chromosomal locations such as centromeric, pericentromeric, and subtelomeric regions. In the present study, utilizing the published draft genome sequence of melon, two new SatDNAs (CmSat162 and CmSat189) of melon were identified and their chromosomal distributions were confirmed using fluorescence in situ hybridization. DNA probes prepared from these SatDNAs were successfully hybridized to melon somatic and meiotic chromosomes. CmSat162 was located on 12 pairs of melon chromosomes and co-localized with the centromeric repeat, Cmcent, at the centromeric regions. In contrast, CmSat189 was found to be located not only on centromeric regions but also on specific regions of the chromosomes, allowing the characterization of individual chromosomes of melon. It was also shown that these SatDNAs were transcribed in melon. These results suggest that CmSat162 and CmSat189 might have some functions at the centromeric regions.


Asunto(s)
Centrómero/genética , Cucumis melo/genética , Secuencias Repetitivas de Ácidos Nucleicos , ADN de Plantas/genética , Genoma de Planta/genética , Genómica , Hibridación Fluorescente in Situ , Transcripción Genética
16.
Sci Rep ; 9(1): 3047, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30816255

RESUMEN

Curcuma alismatifolia widely used as an ornamental plant in Thailand and Cambodia. This species of herbaceous perennial from the Zingiberaceae family, includes cultivars with a wide range of colours and long postharvest life, and is used as an ornamental cut flower, as a potted plant, and in exterior landscapes. For further genetic improvement, however, little genomic information and no specific molecular markers are available. The present study used Illumina sequencing and de novo transcriptome assembly of two C. alismatifolia cvs, 'Chiang Mai Pink' and 'UB Snow 701', to develop simple sequence repeat markers for genetic diversity studies. After de novo assembly, 62,105 unigenes were generated and 48,813 (78.60%) showed significant similarities versus six functional protein databases. In addition, 9,351 expressed sequence tag-simple sequence repeats (EST-SSRs) were identified with a distribution frequency of 12.5% total unigenes. Out of 8,955 designed EST-SSR primers, 150 primers were selected for the development of potential molecular markers. Among these markers, 17 EST-SSR markers presented a moderate level of genetic diversity among three C. alismatifolia cultivars, one hybrid, three Curcuma, and two Zingiber species. Three different genetic groups within these species were revealed using EST-SSR markers, indicating that the markers developed in this study can be effectively applied to the population genetic analysis of Curcuma and Zingiber species. This report describes the first analysis of transcriptome data of an important ornamental ginger cultivars, also provides a valuable resource for gene discovery and marker development in the genus Curcuma.


Asunto(s)
Curcuma/genética , Etiquetas de Secuencia Expresada , Genes de Plantas , Repeticiones de Microsatélite/genética , Transcriptoma/genética , Cambodia , ADN de Plantas/genética , Flores/genética , Marcadores Genéticos , Zingiber officinale/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Fitomejoramiento , ARN de Planta/genética , RNA-Seq , Tailandia
18.
Euphytica ; 215(10): 175, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31929606

RESUMEN

Fusarium wilt of bananas (Musa spp.), caused by Fusarium oxysporum f. sp. cubense (Foc) causes up to 100% yield loss in bananas. Foc race 1 in particular is very devastating to dessert bananas in Uganda. One of the effective control strategies for the disease is the development of resistant cultivars through breeding. The objectives of this study were to identify suitable banana germplasm for generating a segregating population for resistance to Foc race 1 and understand the mode of inheritance of resistance to Foc race 1. Twenty-two banana accessions sourced from the National Agricultural Research Organisation in Uganda were challenged with Foc race 1 in a screen house experiment. Monyet, resistant to Foc race 1 and Kokopo, susceptible, were selected and crossed to generate 142 F1 genotypes. These F1 genotypes were also challenged with Foc race 1 in a screen house experiment. Data were collected on rhizome discoloration index (RDI), leaf symptom index (LSI) and pseudo-stem splitting (PSS), and analysed for variability. The banana accessions evaluated showed varying degrees of resistance to Foc race 1. Segregation ratios for resistant versus susceptible progenies fitted 13:3 (χ2 = 0.12, P = 0.73) for RDI and 11:5 (χ2 = 3.04, P = 0.08) for PSS. Estimated broad sense heritability was 27.8% for RDI, 13.9% for LSI and 14.7% for PSS. The results suggest that resistance to Foc race 1 in banana is controlled by at least two dominant genes with epistatic interaction and that heritability of resistance to Foc race 1 is low in Musa spp.

19.
3 Biotech ; 8(8): 321, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30034985

RESUMEN

Information on the abiotic stress tolerance and ice-ice disease resistance properties of tissue-cultured Kappaphycus alvarezii is scarce and can pose a big hurdle to a wider use of tissue-cultured seaweed in the industry. Here, we reported on a study of seaweed-associated bacteria diversity in farmed and tissue-cultured K. alvarezii, and ice-ice disease resistance and elevated growth temperature tolerance of tissue-cultured K. alvarezii in laboratory conditions. A total of 40 endophytic seaweed-associated bacteria strains were isolated from 4 types of K. alvarezii samples based on their colony morphologies, Gram staining properties and 16S rRNA gene sequences. Bacteria strains isolated were found to belong to Alteromonas sp., Aestuariibacter sp., Idiomarina sp., Jejuia sp., Halomonas sp., Primorskyibacter sp., Pseudoalteromonas sp., Ruegeria sp., Terasakiella sp., Thalassospira sp. and Vibrio sp. Vibrio alginolyticus strain ABI-TU15 isolated in this study showed agar-degrading property when analyzed using agar depression assay. Disease resistance assay was performed by infecting healthy K. alvarezii with 105 cells/mL Vibrio sp. ABI-TU15. Severe ice-ice disease symptoms were detected in farmed seaweeds compared to the tissue-cultured K. alvarezii. Besides disease resistance, tissue-cultured K. alvarezii showed better tolerance to the elevated growth temperatures of 30 and 35 °C. In conclusion, our overall data suggests that tissue-cultured K. alvarezii exhibited better growth performance than farmed seaweeds when exposed to elevated growth temperature and ice-ice disease-causing agent.

20.
Mol Cytogenet ; 11: 32, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29760782

RESUMEN

BACKGROUND: Detailed karyotyping using metaphase chromosomes in melon (Cucumis melo L.) remains a challenge because of their small chromosome sizes and poor stainability. Prometaphase chromosomes, which are two times longer and loosely condensed, provide a significantly better resolution for fluorescence in situ hybridization (FISH) than metaphase chromosomes. However, suitable method for acquiring prometaphase chromosomes in melon have been poorly investigated. RESULTS: In this study, a modified Carnoy's solution II (MC II) [6:3:1 (v/v) ethanol: acetic acid: chloroform] was used as a pretreatment solution to obtain prometaphase chromosomes. We demonstrated that the prometaphase chromosomes obtained using the MC II method are excellent for karyotyping and FISH analysis. We also observed that a combination of MC II and the modified air dry (ADI) method provides a satisfactory meiotic pachytene chromosome preparation with reduced cytoplasmic background and clear chromatin spreads. Moreover, we demonstrated that pachytene and prometaphase chromosomes of melon and Abelia × grandiflora generate significantly better FISH images when prepared using the method described. We confirmed, for the first time, that Abelia × grandiflora has pairs of both strong and weak 45S ribosomal DNA signals on the short arms of their metaphase chromosomes. CONCLUSION: The MC II and ADI method are simple and effective for acquiring prometaphase and pachytene chromosomes with reduced cytoplasm background in plants. Our methods provide high-resolution FISH images that can help accelerate molecular cytogenetic research in plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA