Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 46(18): 9456-9470, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30053221

RESUMEN

TIP60 is a lysine acetyltransferase and is known to be a haplo-insufficient tumor suppressor. TIP60 downregulation is an early event in tumorigenesis which has been observed in several cancer types including breast and colorectal cancers. However, the mechanism by which it regulates tumor progression is not well understood. In this study, we identified the role of TIP60 in the silencing of endogenous retroviral elements (ERVs). TIP60-mediated silencing of ERVs is dependent on BRD4. TIP60 and BRD4 positively regulate the expression of enzymes, SUV39H1 and SETDB1 and thereby, the global H3K9 trimethylation (H3K9me3) level. In colorectal cancer, we found that the loss of TIP60 de-represses retrotransposon elements genome-wide, which in turn activate the cellular response to pathogens, mediated by STING, culminating in an induction of Interferon Regulatory Factor 7 (IRF7) and associated inflammatory response. In summary, this study has identified a unique mechanism of ERV regulation in cancer cells mediated by TIP60 and BRD4 through regulation of histone H3 K9 trimethylation, and a new tumor suppressive role of TIP60 in vivo.


Asunto(s)
Retrovirus Endógenos/genética , Silenciador del Gen , Genes Supresores de Tumor , Lisina Acetiltransferasa 5/fisiología , Animales , Proteínas de Ciclo Celular , Células Cultivadas , Metilación de ADN , Células HCT116 , Células HEK293 , Células HT29 , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Proteínas Nucleares/fisiología , Factores de Transcripción/fisiología
2.
Theranostics ; 12(8): 3794-3817, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35664067

RESUMEN

Background: High emotional or psychophysical stress levels have been correlated with an increased risk and progression of various diseases. How stress impacts the gut microbiota to influence metabolism and subsequent cancer progression is unclear. Methods: Feces and serum samples from BALB/c ANXA1+/+ and ANXA1-/- mice with or without chronic restraint stress were used for 16S rRNA gene sequencing and GC-MS metabolomics analysis to investigate the effect of stress on microbiome and metabolomics during stress and breast tumorigenesis. Breast tumors samples from stressed and non-stressed mice were used to perform Whole-Genome Bisulfite Sequencing (WGBS) and RNAseq analysis to construct the potential network from candidate hub genes. Finally, machine learning and integrated analysis were used to map the axis from chronic restraint stress to breast cancer development. Results: We report that chronic stress promotes breast tumor growth via a stress-microbiome-metabolite-epigenetic-oncology (SMMEO) axis. Chronic restraint stress in mice alters the microbiome composition and fatty acids metabolism and induces an epigenetic signature in tumors xenografted after stress. Subsequent machine learning and systemic modeling analyses identified a significant correlation among microbiome composition, metabolites, and differentially methylated regions in stressed tumors. Moreover, silencing Annexin-A1 inhibits the changes in the gut microbiome and fatty acid metabolism after stress as well as basal and stress-induced tumor growth. Conclusions: These data support a physiological axis linking the microbiome and metabolites to cancer epigenetics and inflammation. The identification of this axis could propel the next phase of experimental discovery in further understanding the underlying molecular mechanism of tumorigenesis caused by physiological stress.


Asunto(s)
Anexina A1 , Microbiota , Neoplasias , Animales , Carcinogénesis/genética , Epigénesis Genética , Ácidos Grasos/farmacología , Metaboloma , Metabolómica , Ratones , Neoplasias/genética , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA