RESUMEN
Several studies have reported associations between multiple cancer types and single-nucleotide polymorphisms (SNPs) on chromosome 5p15, which harbours TERT and CLPTM1L, but no such association has been reported with endometrial cancer. To evaluate the role of genetic variants at the TERT-CLPTM1L region in endometrial cancer risk, we carried out comprehensive fine-mapping analyses of genotyped and imputed SNPs using a custom Illumina iSelect array which includes dense SNP coverage of this region. We examined 396 SNPs (113 genotyped, 283 imputed) in 4,401 endometrial cancer cases and 28,758 controls. Single-SNP and forward/backward logistic regression models suggested evidence for three variants independently associated with endometrial cancer risk (P = 4.9 × 10(-6) to P = 7.7 × 10(-5)). Only one falls into a haplotype previously associated with other cancer types (rs7705526, in TERT intron 1), and this SNP has been shown to alter TERT promoter activity. One of the novel associations (rs13174814) maps to a second region in the TERT promoter and the other (rs62329728) is in the promoter region of CLPTM1L; neither are correlated with previously reported cancer-associated SNPs. Using TCGA RNASeq data, we found significantly increased expression of both TERT and CLPTM1L in endometrial cancer tissue compared with normal tissue (TERT P = 1.5 × 10(-18), CLPTM1L P = 1.5 × 10(-19)). Our study thus reports a novel endometrial cancer risk locus and expands the spectrum of cancer types associated with genetic variation at 5p15, further highlighting the importance of this region for cancer susceptibility.
Asunto(s)
Cromosomas Humanos Par 5/genética , Sitios Genéticos , Proteínas de la Membrana/genética , Modelos Genéticos , Proteínas de Neoplasias/genética , Polimorfismo de Nucleótido Simple , Telomerasa/genética , Cromosomas Humanos Par 5/metabolismo , Bases de Datos de Ácidos Nucleicos , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Haplotipos , Humanos , Proteínas de la Membrana/biosíntesis , Proteínas de Neoplasias/biosíntesis , Regiones Promotoras Genéticas , Factores de Riesgo , Telomerasa/biosíntesisRESUMEN
Mucinous ovarian carcinomas (MCs) typically do not respond to current conventional therapy. We have previously demonstrated amplification of HER2 in 6 of 33 (18.2%) mucinous ovarian carcinomas (MCs) and presented anecdotal evidence of response with HER2-targeted treatment in a small series of women with recurrent HER2-amplified (HER2+) MC. Here, we explore HER2 amplification and KRAS mutation status in an independent cohort of 189 MCs and 199 mucinous borderline ovarian tumours (MBOTs) and their association to clinicopathological features. HER2 status was assessed by immunohistochemistry (IHC), FISH, and CISH, and interpreted per ASCO/CAP guidelines, with intratumoural heterogeneity assessment on full sections, where available. KRAS mutation testing was performed with Sanger sequencing. Stage and grade were associated with recurrence on both univariate and multivariate analysis (p < 0.001). Assessment of HER2 status revealed overexpression/amplification of HER2 in 29/154 (18.8%) MCs and 11/176 (6.2%) MBOTs. There was excellent agreement between IHC, FISH, and CISH assessment of HER2 status (perfect concordance of HER2 0 or 1+ IHC with non-amplified status, and 3+ IHC with amplified status). KRAS mutations were seen in 31/71 (43.6%) MCs and 26/33 (78.8%) MBOTs, and were near mutually exclusive of HER2 amplification. In the 189 MC cases, a total of 54 recurrences and 59 deaths (53 of progressive disease) were observed. Within MCs, either HER2 amplification/overexpression or KRAS mutation was associated with decreased likelihood of disease recurrence (p = 0.019) or death (p = 0.0041) when compared to cases with neither feature. Intratumoural heterogeneity was noted in 26% of HER2-overexpressing cases. These data support the stratification of MCs for the testing of new treatments, with HER2-targeted therapy as a viable option for HER2+ advanced or recurrent disease. Further research is required to delineate the molecular and clinical features of the â¼34% of MC cases with neither HER2 amplification nor KRAS mutations.
Asunto(s)
Adenocarcinoma Mucinoso/genética , Biomarcadores de Tumor/genética , Amplificación de Genes , Neoplasias Ováricas/genética , Receptor ErbB-2/genética , Adenocarcinoma Mucinoso/química , Adenocarcinoma Mucinoso/tratamiento farmacológico , Adenocarcinoma Mucinoso/mortalidad , Adenocarcinoma Mucinoso/secundario , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Australia , Biomarcadores de Tumor/análisis , Canadá , Análisis Mutacional de ADN , Progresión de la Enfermedad , Supervivencia sin Enfermedad , Femenino , Predisposición Genética a la Enfermedad , Humanos , Inmunohistoquímica , Hibridación Fluorescente in Situ , Estimación de Kaplan-Meier , Persona de Mediana Edad , Terapia Molecular Dirigida , Análisis Multivariante , Mutación , Clasificación del Tumor , Recurrencia Local de Neoplasia , Estadificación de Neoplasias , Neoplasias Ováricas/química , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/mortalidad , Neoplasias Ováricas/patología , Fenotipo , Pronóstico , Modelos de Riesgos Proporcionales , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas p21(ras) , Receptor ErbB-2/análisis , Medición de Riesgo , Factores de Riesgo , Factores de Tiempo , Estados Unidos , Adulto Joven , Proteínas ras/genéticaRESUMEN
CX3CL1 is a multifunctional chemokine that is involved in numerous biological processes, such as immune cell attraction and enhanced tumor immune cell interaction, but also in enhancing tumor cell proliferation and metastasis. The multifarious activity is partially determined by two CX3CL1 isoforms, a membrane-bound and a soluble version generated by proteolytic cleavage through proteases. Here, we investigated the impact of CX3CL1 overexpression in MDA-MB-453 and SK-BR-3 breast cancer cells. Moreover, we evaluated the therapeutic capacity of Matrix-Metalloproteinases-inhibitors TMI-1 and GI254023X in combination with the anti-HER2 antibody trastuzumab in vitro and in vivo. TMI-1 and GI254023X caused a reduced shedding of CX3CL1 and of HER2 in vitro but without effects on tumor cell proliferation or viability. In addition, trastuzumab treatment did not retard MDA-MB-453 cell expansion in vitro unless CX3CL1 was overexpressed upon transfection (MDA-MB-453CX3CL1). In humanized tumor mice, which show a coexistence of human tumor and human immune system, CX3CL1 overexpression resulted in a slightly enhanced tumor growth. However, trastuzumab treatment attenuated tumor growth of both MDA-MB-453CX3CL1 and empty vector transfected MDA-MB-453 transplanted mice but showed enhanced efficiency especially in preventing lung metastases in CX3CL1 overexpressing cancer cells. However, TMI-1 did not further enhance the trastuzumab treatment efficacy.
RESUMEN
BACKGROUND: Despite the utility of antiangiogenic drugs in ovarian cancer, efficacy remains limited due to resistance linked to alternate angiogenic pathways and metastasis. Therefore, we investigated PG545, an anti-angiogenic and anti-metastatic agent which is currently in Phase I clinical trials, using preclinical models of ovarian cancer. METHODS: PG545's anti-cancer activity was investigated in vitro and in vivo as a single agent, and in combination with paclitaxel, cisplatin or carboplatin using various ovarian cancer cell lines and tumour models. RESULTS: PG545, alone, or in combination with chemotherapeutics, inhibited proliferation of ovarian cancer cells, demonstrating synergy with paclitaxel in A2780 cells. PG545 inhibited growth factor-mediated cell migration and reduced HB-EGF-induced phosphorylation of ERK, AKT and EGFR in vitro and significantly reduced tumour burden which was enhanced when combined with paclitaxel in an A2780 model or carboplatin in a SKOV-3 model. Moreover, in the immunocompetent ID8 model, PG545 also significantly reduced ascites in vivo. In the A2780 maintenance model, PG545 initiated with, and following paclitaxel and cisplatin treatment, significantly improved overall survival. PG545 increased plasma VEGF levels (and other targets) in preclinical models and in a small cohort of advanced cancer patients which might represent a potential biomarker of response. CONCLUSION: Our results support clinical testing of PG545, particularly in combination with paclitaxel, as a novel therapeutic strategy for ovarian cancer.