Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 36(2): 447-470, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37820736

RESUMEN

Plant nucleotide-binding leucine-rich repeat (NLRs) immune receptors directly or indirectly recognize pathogen-secreted effector molecules to initiate plant defense. Recognition of multiple pathogens by a single NLR is rare and usually occurs via monitoring for changes to host proteins; few characterized NLRs have been shown to recognize multiple effectors. The barley (Hordeum vulgare) NLR gene Mildew locus a (Mla) has undergone functional diversification, and the proteins encoded by different Mla alleles recognize host-adapted isolates of barley powdery mildew (Blumeria graminis f. sp. hordei [Bgh]). Here, we show that Mla3 also confers resistance to the rice blast fungus Magnaporthe oryzae in a dosage-dependent manner. Using a forward genetic screen, we discovered that the recognized effector from M. oryzae is Pathogenicity toward Weeping Lovegrass 2 (Pwl2), a host range determinant factor that prevents M. oryzae from infecting weeping lovegrass (Eragrostis curvula). Mla3 has therefore convergently evolved the capacity to recognize effectors from diverse pathogens.


Asunto(s)
Ascomicetos , Eragrostis , Hordeum , Magnaporthe , Virulencia/genética , Hordeum/genética , Eragrostis/metabolismo , Plantas/metabolismo , Especificidad del Huésped , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(28): e2402872121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38968126

RESUMEN

Bioengineering of plant immune receptors has emerged as a key strategy for generating novel disease resistance traits to counteract the expanding threat of plant pathogens to global food security. However, current approaches are limited by rapid evolution of plant pathogens in the field and may lack durability when deployed. Here, we show that the rice nucleotide-binding, leucine-rich repeat (NLR) immune receptor Pik-1 can be engineered to respond to a conserved family of effectors from the multihost blast fungus pathogen Magnaporthe oryzae. We switched the effector binding and response profile of the Pik NLR from its cognate rice blast effector AVR-Pik to the host-determining factor pathogenicity toward weeping lovegrass 2 (Pwl2) by installing a putative host target, OsHIPP43, in place of the native integrated heavy metal-associated domain (generating Pikm-1OsHIPP43). This chimeric receptor also responded to other PWL alleles from diverse blast isolates. The crystal structure of the Pwl2/OsHIPP43 complex revealed a multifaceted, robust interface that cannot be easily disrupted by mutagenesis, and may therefore provide durable, broad resistance to blast isolates carrying PWL effectors in the field. Our findings highlight how the host targets of pathogen effectors can be used to bioengineer recognition specificities that have more robust properties compared to naturally evolved disease resistance genes.


Asunto(s)
Proteínas Fúngicas , Proteínas NLR , Oryza , Enfermedades de las Plantas , Proteínas de Plantas , Oryza/microbiología , Oryza/inmunología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Proteínas NLR/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/inmunología , Proteínas de Plantas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/inmunología , Interacciones Huésped-Patógeno/inmunología , Resistencia a la Enfermedad/inmunología , Inmunidad de la Planta , Bioingeniería/métodos , Magnaporthe/inmunología , Magnaporthe/genética , Magnaporthe/metabolismo , Unión Proteica , Receptores Inmunológicos/metabolismo , Ascomicetos
3.
PLoS Pathog ; 20(6): e1012277, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38885263

RESUMEN

Filamentous plant pathogens deliver effector proteins into host cells to suppress host defence responses and manipulate metabolic processes to support colonization. Understanding the evolution and molecular function of these effectors provides knowledge about pathogenesis and can suggest novel strategies to reduce damage caused by pathogens. However, effector proteins are highly variable, share weak sequence similarity and, although they can be grouped according to their structure, only a few structurally conserved effector families have been functionally characterized to date. Here, we demonstrate that Zinc-finger fold (ZiF) secreted proteins form a functionally diverse effector family in the blast fungus Magnaporthe oryzae. This family relies on the Zinc-finger motif for protein stability and is ubiquitously present in blast fungus lineages infecting 13 different host species, forming different effector tribes. Homologs of the canonical ZiF effector, AVR-Pii, from rice infecting isolates are present in multiple M. oryzae lineages. Wheat infecting strains of the fungus also possess an AVR-Pii like allele that binds host Exo70 proteins and activates the immune receptor Pii. Furthermore, ZiF tribes may vary in the proteins they bind to, indicating functional diversification and an intricate effector/host interactome. Altogether, we uncovered a new effector family with a common protein fold that has functionally diversified in lineages of M. oryzae. This work expands our understanding of the diversity of M. oryzae effectors, the molecular basis of plant pathogenesis and may ultimately facilitate the development of new sources for pathogen resistance.


Asunto(s)
Proteínas Fúngicas , Enfermedades de las Plantas , Dedos de Zinc , Enfermedades de las Plantas/microbiología , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Interacciones Huésped-Patógeno , Oryza/microbiología , Ascomicetos/genética , Ascomicetos/metabolismo , Magnaporthe/genética , Magnaporthe/metabolismo , Filogenia
4.
PLoS Biol ; 21(1): e3001945, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36656825

RESUMEN

Studies focused solely on single organisms can fail to identify the networks underlying host-pathogen gene-for-gene interactions. Here, we integrate genetic analyses of rice (Oryza sativa, host) and rice blast fungus (Magnaporthe oryzae, pathogen) and uncover a new pathogen recognition specificity of the rice nucleotide-binding domain and leucine-rich repeat protein (NLR) immune receptor Pik, which mediates resistance to M. oryzae expressing the avirulence effector gene AVR-Pik. Rice Piks-1, encoded by an allele of Pik-1, recognizes a previously unidentified effector encoded by the M. oryzae avirulence gene AVR-Mgk1, which is found on a mini-chromosome. AVR-Mgk1 has no sequence similarity to known AVR-Pik effectors and is prone to deletion from the mini-chromosome mediated by repeated Inago2 retrotransposon sequences. AVR-Mgk1 is detected by Piks-1 and by other Pik-1 alleles known to recognize AVR-Pik effectors; recognition is mediated by AVR-Mgk1 binding to the integrated heavy metal-associated (HMA) domain of Piks-1 and other Pik-1 alleles. Our findings highlight how complex gene-for-gene interaction networks can be disentangled by applying forward genetics approaches simultaneously to the host and pathogen. We demonstrate dynamic coevolution between an NLR integrated domain and multiple families of effector proteins.


Asunto(s)
Oryza , Receptores Inmunológicos , Receptores Inmunológicos/metabolismo , Hongos/metabolismo , Enfermedades de las Plantas/microbiología , Interacciones Huésped-Patógeno/genética , Oryza/genética , Oryza/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Plant Physiol ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38828881

RESUMEN

Plants recognize a variety of external signals and induce appropriate mechanisms to increase their tolerance to biotic and abiotic stresses. Precise recognition of attacking pathogens and induction of effective resistance mechanisms are critical functions for plant survival. Some molecular patterns unique to a certain group of microbes, microbe-associated molecular patterns (MAMPs), are sensed by plant cells as nonself molecules via pattern recognition receptors. While MAMPs of bacterial and fungal origin have been identified, reports on oomycete MAMPs are relatively limited. This study aimed to identify MAMPs from an oomycete pathogen Phytophthora infestans, the causal agent of potato late blight. Using reactive oxygen species (ROS) production and phytoalexin production in potato (Solanum tuberosum) as markers, two structurally different groups of elicitors, namely ceramides and diacylglycerols, were identified. P. infestans ceramides (Pi-Cer A, B, and D) induced ROS production, while diacylglycerol (Pi-DAG A and B), containing eicosapentaenoic acid (EPA) as a substructure, induced phytoalexins production in potato. The molecular patterns in Pi-Cers and Pi-DAGs essential for defense induction were identified as 9-methyl-4,8-sphingadienine (9Me-Spd) and 5,8,11,14-tetraene-type fatty acid (5,8,11,14-TEFA), respectively. These structures are not found in plants, but in oomycetes and fungi, indicating that they are microbe molecular patterns recognized by plants. When Arabidopsis (Arabidopsis thaliana) was treated with Pi-Cer D and EPA, partially overlapping but different sets of genes were induced. Furthermore, expression of some genes is upregulated only after the simultaneous treatment with Pi-Cer D and EPA, indicating that plants combine the signals from simultaneously recognized MAMPs to adapt their defense response to pathogens.

6.
Proc Natl Acad Sci U S A ; 119(27): e2116896119, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35771942

RESUMEN

Throughout their evolution, plant nucleotide-binding leucine-rich-repeat receptors (NLRs) have acquired widely divergent unconventional integrated domains that enhance their ability to detect pathogen effectors. However, the functional dynamics that drive the evolution of NLRs with integrated domains (NLR-IDs) remain poorly understood. Here, we reconstructed the evolutionary history of an NLR locus prone to unconventional domain integration and experimentally tested hypotheses about the evolution of NLR-IDs. We show that the rice (Oryza sativa) NLR Pias recognizes the effector AVR-Pias of the blast fungal pathogen Magnaporthe oryzae. Pias consists of a functionally specialized NLR pair, the helper Pias-1 and the sensor Pias-2, that is allelic to the previously characterized Pia pair of NLRs: the helper RGA4 and the sensor RGA5. Remarkably, Pias-2 carries a C-terminal DUF761 domain at a similar position to the heavy metal-associated (HMA) domain of RGA5. Phylogenomic analysis showed that Pias-2/RGA5 sensor NLRs have undergone recurrent genomic recombination within the genus Oryza, resulting in up to six sequence-divergent domain integrations. Allelic NLRs with divergent functions have been maintained transspecies in different Oryza lineages to detect sequence-divergent pathogen effectors. By contrast, Pias-1 has retained its NLR helper activity throughout evolution and is capable of functioning together with the divergent sensor-NLR RGA5 to respond to AVR-Pia. These results suggest that opposite selective forces have driven the evolution of paired NLRs: highly dynamic domain integration events maintained by balancing selection for sensor NLRs, in sharp contrast to purifying selection and functional conservation of immune signaling for helper NLRs.


Asunto(s)
Evolución Molecular , Magnaporthe , Proteínas NLR , Oryza , Enfermedades de las Plantas , Proteínas de Plantas , Receptores Inmunológicos , Ligamiento Genético , Interacciones Huésped-Patógeno/inmunología , Magnaporthe/genética , Magnaporthe/patogenicidad , Proteínas NLR/genética , Proteínas NLR/inmunología , Oryza/inmunología , Oryza/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/inmunología , Proteínas Inhibidoras de STAT Activados/genética , Proteínas Inhibidoras de STAT Activados/inmunología , Receptores Inmunológicos/genética , Receptores Inmunológicos/inmunología
7.
Proc Natl Acad Sci U S A ; 119(43): e2210559119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36252011

RESUMEN

Exocytosis plays an important role in plant-microbe interactions, in both pathogenesis and symbiosis. Exo70 proteins are integral components of the exocyst, an octameric complex that mediates tethering of vesicles to membranes in eukaryotes. Although plant Exo70s are known to be targeted by pathogen effectors, the underpinning molecular mechanisms and the impact of this interaction on infection are poorly understood. Here, we show the molecular basis of the association between the effector AVR-Pii of the blast fungus Maganaporthe oryzae and rice Exo70 alleles OsExo70F2 and OsExo70F3, which is sensed by the immune receptor pair Pii via an integrated RIN4/NOI domain. The crystal structure of AVR-Pii in complex with OsExo70F2 reveals that the effector binds to a conserved hydrophobic pocket in Exo70, defining an effector/target binding interface. Structure-guided and random mutagenesis validates the importance of AVR-Pii residues at the Exo70 binding interface to sustain protein association and disease resistance in rice when challenged with fungal strains expressing effector mutants. Furthermore, the structure of AVR-Pii defines a zinc-finger effector fold (ZiF) distinct from the MAX (Magnaporthe Avrs and ToxB-like) fold previously described for a majority of characterized M. oryzae effectors. Our data suggest that blast fungus ZiF effectors bind a conserved Exo70 interface to manipulate plant exocytosis and that these effectors are also baited by plant immune receptors, pointing to new opportunities for engineering disease resistance.


Asunto(s)
Magnaporthe , Oryza , Resistencia a la Enfermedad , Proteínas Fúngicas/metabolismo , Interacciones Huésped-Patógeno , Magnaporthe/genética , Oryza/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/química , Plantas/metabolismo , Zinc/metabolismo
8.
PLoS Pathog ; 18(9): e1010792, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36173975

RESUMEN

When infecting plants, fungal pathogens secrete cell wall-degrading enzymes (CWDEs) that break down cellulose and hemicellulose, the primary components of plant cell walls. Some fungal CWDEs contain a unique domain, named the carbohydrate binding module (CBM), that facilitates their access to polysaccharides. However, little is known about how plants counteract pathogen degradation of their cell walls. Here, we show that the rice cysteine-rich repeat secretion protein OsRMC binds to and inhibits xylanase MoCel10A of the blast fungus pathogen Magnaporthe oryzae, interfering with its access to the rice cell wall and degradation of rice xylan. We found binding of OsRMC to various CBM1-containing enzymes, suggesting that it has a general role in inhibiting the action of CBM1. OsRMC is localized to the apoplast, and its expression is strongly induced in leaves infected with M. oryzae. Remarkably, knockdown and overexpression of OsRMC reduced and enhanced rice defense against M. oryzae, respectively, demonstrating that inhibition of CBM1-containing fungal enzymes by OsRMC is crucial for rice defense. We also identified additional CBM-interacting proteins (CBMIPs) from Arabidopsis thaliana and Setaria italica, indicating that a wide range of plants counteract pathogens through this mechanism.


Asunto(s)
Arabidopsis , Oryza , Celulosa , Cisteína , Proteínas Fúngicas/genética , Oryza/genética , Xilanos
9.
PLoS Pathog ; 17(11): e1009957, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34758051

RESUMEN

Accelerated gene evolution is a hallmark of pathogen adaptation and specialization following host-jumps. However, the molecular processes associated with adaptive evolution between host-specific lineages of a multihost plant pathogen remain poorly understood. In the blast fungus Magnaporthe oryzae (Syn. Pyricularia oryzae), host specialization on different grass hosts is generally associated with dynamic patterns of gain and loss of virulence effector genes that tend to define the distinct genetic lineages of this pathogen. Here, we unravelled the biochemical and structural basis of adaptive evolution of APikL2, an exceptionally conserved paralog of the well-studied rice-lineage specific effector AVR-Pik. Whereas AVR-Pik and other members of the six-gene AVR-Pik family show specific patterns of presence/absence polymorphisms between grass-specific lineages of M. oryzae, APikL2 stands out by being ubiquitously present in all blast fungus lineages from 13 different host species. Using biochemical, biophysical and structural biology methods, we show that a single aspartate to asparagine polymorphism expands the binding spectrum of APikL2 to host proteins of the heavy-metal associated (HMA) domain family. This mutation maps to one of the APikL2-HMA binding interfaces and contributes to an altered hydrogen-bonding network. By combining phylogenetic ancestral reconstruction with an analysis of the structural consequences of allelic diversification, we revealed a common mechanism of effector specialization in the AVR-Pik/APikL2 family that involves two major HMA-binding interfaces. Together, our findings provide a detailed molecular evolution and structural biology framework for diversification and adaptation of a fungal pathogen effector family following host-jumps.


Asunto(s)
Evolución Molecular , Interacciones Huésped-Patógeno , Magnaporthe/fisiología , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Polimorfismo Genético , Sustitución de Aminoácidos , Oryza/metabolismo , Filogenia , Proteínas de Plantas/genética , Virulencia
10.
Physiol Plant ; 175(5): e14052, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37882264

RESUMEN

Basal plant immune responses are activated by the recognition of conserved microbe-associated molecular patterns (MAMPs), or breakdown molecules released from the plants after damage by pathogen penetration, so-called damage-associated molecular patterns (DAMPs). While chitin-oligosaccharide (CHOS), a primary component of fungal cell walls, is most known as MAMP, plant cell wall-derived oligosaccharides, cello-oligosaccharides (COS) from cellulose, and xylo-oligosaccharide (XOS) from hemicellulose are representative DAMPs. In this study, elicitor activities of COS prepared from cotton linters, XOS prepared from corn cobs, and chitin-oligosaccharide (CHOS) from crustacean shells were comparatively investigated. In Arabidopsis, COS, XOS, or CHOS treatment triggered typical defense responses such as reactive oxygen species (ROS) production, phosphorylation of MAP kinases, callose deposition, and activation of the defense-related transcription factor WRKY33 promoter. When COS, XOS, and CHOS were used at concentrations with similar activity in inducing ROS production and callose depositions, CHOS was particularly potent in activating the MAPK kinases and WRKY33 promoters. Among the COS and XOS with different degrees of polymerization, cellotriose and xylotetraose showed the highest activity for the activation of WRKY33 promoter. Gene ontology enrichment analysis of RNAseq data revealed that simultaneous treatment of COS, XOS, and CHOS (oligo-mix) effectively activates plant disease resistance. In practice, treatment with the oligo-mix enhanced the resistance of tomato to powdery mildew, but plant growth was not inhibited but rather tended to be promoted, providing evidence that treatment with the oligo-mix has beneficial effects on improving disease resistance in plants, making them a promising class of compounds for practical application.


Asunto(s)
Arabidopsis , Resistencia a la Enfermedad , Especies Reactivas de Oxígeno/metabolismo , Plantas/metabolismo , Arabidopsis/metabolismo , Pared Celular/metabolismo , Oligosacáridos/farmacología , Oligosacáridos/metabolismo , Quitina/farmacología , Quitina/metabolismo , Enfermedades de las Plantas/genética , Inmunidad de la Planta
11.
Proc Natl Acad Sci U S A ; 117(50): 31987-31992, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33268496

RESUMEN

White Guinea yam (Dioscorea rotundata) is an important staple tuber crop in West Africa. However, its origin remains unclear. In this study, we resequenced 336 accessions of white Guinea yam and compared them with the sequences of wild Dioscorea species using an improved reference genome sequence of D. rotundata In contrast to a previous study suggesting that D. rotundata originated from a subgroup of Dioscorea praehensilis, our results suggest a hybrid origin of white Guinea yam from crosses between the wild rainforest species D. praehensilis and the savannah-adapted species Dioscorea abyssinica We identified a greater genomic contribution from D. abyssinica in the sex chromosome of Guinea yam and extensive introgression around the SWEETIE gene. Our findings point to a complex domestication scenario for Guinea yam and highlight the importance of wild species as gene donors for improving this crop through molecular breeding.


Asunto(s)
Productos Agrícolas/genética , Dioscorea/genética , Genoma de Planta , Hibridación Genética , Cromosomas de las Plantas/genética , ADN de Plantas/genética , Domesticación , Guinea , Filogenia , Fitomejoramiento/métodos , Tubérculos de la Planta , Polimorfismo de Nucleótido Simple , Cromosomas Sexuales/genética
12.
Breed Sci ; 73(4): 415-420, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38106505

RESUMEN

DNA markers are indispensable tools in genetics and genomics research as well as in crop breeding, particularly for marker-assisted selection. Recent advances in next-generation sequencing technology have made it easier to obtain genome sequences for various crop species, enabling the large-scale identification of DNA polymorphisms among varieties, which in turn has made DNA marker design more accessible. However, existing primer design software is not suitable for designing many types of genome-wide DNA markers from next-generation sequencing data. Here, we describe the development of V-primer, high-throughput software for designing insertion/deletion, cleaved amplified polymorphic sequence, and single-nucleotide polymorphism (SNP) markers. We validated the applicability of these markers in different crops. In addition, we performed multiplex PCR targeted amplicon sequencing using SNP markers designed with V-primer. Our results demonstrate that V-primer facilitates the efficient and accurate design of primers and is thus a useful tool for genetics, genomics, and crop breeding. V-primer is freely available at https://github.com/ncod3/vprimer.

13.
J Biol Chem ; 296: 100371, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33548226

RESUMEN

Microbial plant pathogens secrete effector proteins, which manipulate the host to promote infection. Effectors can be recognized by plant intracellular nucleotide-binding leucine-rich repeat (NLR) receptors, initiating an immune response. The AVR-Pik effector from the rice blast fungus Magnaporthe oryzae is recognized by a pair of rice NLR receptors, Pik-1 and Pik-2. Pik-1 contains a noncanonical integrated heavy-metal-associated (HMA) domain, which directly binds AVR-Pik to activate plant defenses. The host targets of AVR-Pik are also HMA-domain-containing proteins, namely heavy-metal-associated isoprenylated plant proteins (HIPPs) and heavy-metal-associated plant proteins (HPPs). Here, we demonstrate that one of these targets interacts with a wider set of AVR-Pik variants compared with the Pik-1 HMA domains. We define the biochemical and structural basis of the interaction between AVR-Pik and OsHIPP19 and compare the interaction to that formed with the HMA domain of Pik-1. Using analytical gel filtration and surface plasmon resonance, we show that multiple AVR-Pik variants, including the stealthy variants AVR-PikC and AVR-PikF, which do not interact with any characterized Pik-1 alleles, bind to OsHIPP19 with nanomolar affinity. The crystal structure of OsHIPP19 in complex with AVR-PikF reveals differences at the interface that underpin high-affinity binding of OsHIPP19-HMA to a wider set of AVR-Pik variants than achieved by the integrated HMA domain of Pik-1. Our results provide a foundation for engineering the HMA domain of Pik-1 to extend binding to currently unrecognized AVR-Pik variants and expand disease resistance in rice to divergent pathogen strains.


Asunto(s)
Ascomicetos/genética , Resistencia a la Enfermedad/inmunología , Alelos , Ascomicetos/metabolismo , Ascomicetos/patogenicidad , Resistencia a la Enfermedad/genética , Interacciones Huésped-Patógeno/inmunología , Magnaporthe/inmunología , Modelos Moleculares , Proteínas NLR/metabolismo , Oryza/genética , Oryza/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo
14.
Plant Cell Physiol ; 63(11): 1667-1678, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-35876055

RESUMEN

A rhizomatous Dioscorea crop 'Edo-dokoro' was described in old records of Japan, but its botanical identity has not been characterized. We found that Edo-dokoro is still produced by four farmers in Tohoku-machi of the Aomori prefecture, Japan. The rhizomes of Edo-dokoro are a delicacy to the local people and are sold in the markets. Morphological characters of Edo-dokoro suggest its hybrid origin between the two species, Dioscorea tokoro and Dioscorea tenuipes. Genome analysis revealed that Edo-dokoro likely originated by hybridization of a male D. tokoro to a female D. tenuipes, followed by a backcross with a male plant of D. tokoro. Edo-dokoro is a typical minor crop possibly maintained for more than 300 years but now almost forgotten by the public. We hypothesize that there are many such uncharacterized genetic heritages passed over generations by small-scale farmers that await serious scientific investigation for future use and improvement by using modern genomics information.


Asunto(s)
Dioscorea , Dioscorea/genética , Genoma de Planta/genética , Genómica , Hibridación Genética , Plantas/genética
15.
BMC Plant Biol ; 22(1): 75, 2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35183127

RESUMEN

BACKGROUND: Plastome (Plastid genome) sequences provide valuable markers for surveying evolutionary relationships and population genetics of plant species. Papilionoideae (papilionoids) has different nucleotide and structural variations in plastomes, which makes it an ideal model for genome evolution studies. Therefore, by sequencing the complete chloroplast genome of Onobrychis gaubae in this study, the characteristics and evolutionary patterns of plastome variations in IR-loss clade were compared. RESULTS: In the present study, the complete plastid genome of O. gaubae, endemic to Iran, was sequenced using Illumina paired-end sequencing and was compared with previously known genomes of the IRLC species of legumes. The O. gaubae plastid genome was 122,688 bp in length and included a large single-copy (LSC) region of 81,486 bp, a small single-copy (SSC) region of 13,805 bp and one copy of the inverted repeat (IRb) of 29,100 bp. The genome encoded 110 genes, including 76 protein-coding genes, 30 transfer RNA (tRNA) genes and four ribosome RNA (rRNA) genes and possessed 83 simple sequence repeats (SSRs) and 50 repeated structures with the highest proportion in the LSC. Comparative analysis of the chloroplast genomes across IRLC revealed three hotspot genes (ycf1, ycf2, clpP) which could be used as DNA barcode regions. Moreover, seven hypervariable regions [trnL(UAA)-trnT(UGU), trnT(GGU)-trnE(UUC), ycf1, ycf2, ycf4, accD and clpP] were identified within Onobrychis, which could be used to distinguish the Onobrychis species. Phylogenetic analyses revealed that O. gaubae is closely related to Hedysarum. The complete O. gaubae genome is a valuable resource for investigating evolution of Onobrychis species and can be used to identify related species. CONCLUSIONS: Our results reveal that the plastomes of the IRLC are dynamic molecules and show multiple gene losses and inversions. The identified hypervariable regions could be used as molecular markers for resolving phylogenetic relationships and species identification and also provide new insights into plastome evolution across IRLC.


Asunto(s)
Fabaceae/genética , Genoma del Cloroplasto , Filogenia , Uso de Codones , Genoma de Planta , Secuenciación de Nucleótidos de Alto Rendimiento , Irán , Secuencias Repetitivas de Ácidos Nucleicos , Selección Genética
16.
Proc Natl Acad Sci U S A ; 116(2): 496-505, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30584105

RESUMEN

Plant pathogens have optimized their own effector sets to adapt to their hosts. However, certain effectors, regarded as core effectors, are conserved among various pathogens, and may therefore play an important and common role in pathogen virulence. We report here that the widely distributed fungal effector NIS1 targets host immune components that transmit signaling from pattern recognition receptors (PRRs) in plants. NIS1 from two Colletotrichum spp. suppressed the hypersensitive response and oxidative burst, both of which are induced by pathogen-derived molecules, in Nicotiana benthamianaMagnaporthe oryzae NIS1 also suppressed the two defense responses, although this pathogen likely acquired the NIS1 gene via horizontal transfer from Basidiomycota. Interestingly, the root endophyte Colletotrichum tofieldiae also possesses a NIS1 homolog that can suppress the oxidative burst in N. benthamiana We show that NIS1 of multiple pathogens commonly interacts with the PRR-associated kinases BAK1 and BIK1, thereby inhibiting their kinase activities and the BIK1-NADPH oxidase interaction. Furthermore, mutations in the NIS1-targeting proteins, i.e., BAK1 and BIK1, in Arabidopsis thaliana also resulted in reduced immunity to Colletotrichum fungi. Finally, M. oryzae lacking NIS1 displayed significantly reduced virulence on rice and barley, its hosts. Our study therefore reveals that a broad range of filamentous fungi maintain and utilize the core effector NIS1 to establish infection in their host plants and perhaps also beneficial interactions, by targeting conserved and central PRR-associated kinases that are also known to be targeted by bacterial effectors.


Asunto(s)
Proteínas Portadoras/inmunología , Proteínas Fúngicas/inmunología , Magnaporthe/inmunología , Nicotiana , Enfermedades de las Plantas , Proteínas de Plantas/inmunología , Proteínas Serina-Treonina Quinasas/inmunología , Transducción de Señal/inmunología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Nicotiana/inmunología , Nicotiana/microbiología
17.
Mol Microbiol ; 114(4): 626-640, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32634260

RESUMEN

The endophytic fungus Epichloë festucae systemically colonizes the intercellular spaces of cool-season grasses to establish a mutualistic symbiosis. Hyphal growth of the endophyte within the host plant is tightly regulated and synchronized with the growth of the host plant. A genetic screen to identify symbiotic genes identified mutant FR405 that had an antagonistic interaction with the host plant. Perennial ryegrass infected with the FR405 mutant were stunted and underwent premature senescence and death. The disrupted gene in FR405 encodes a nuclear-localized protein, designated as NsiA for nuclear protein for symbiotic infection. Like previously isolated symbiotic mutants the nsiA mutant is defective in hyphal cell fusion. NsiA interacts with Ste12, a C2H2 zinc-finger transcription factor, and a MAP kinase MpkB. Both are known as essential components for cell fusion in other fungal species. In E. festucae, MpkB, but not Ste12, is essential for cell fusion. Expression of several genes required for cell fusion and symbiosis, including proA/adv-1, pro41/ham-6, ham7, ham8, and ham9 were downregulated in the nsiA mutant. However, the NsiA ortholog in Neurospora crassa was not essential for hyphal cell fusion. These results demonstrate that the roles of NsiA and Ste12 orthologs in hyphal cell fusion are distinctive between fungal species.


Asunto(s)
Epichloe/metabolismo , Fusión Celular , Epichloe/enzimología , Epichloe/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Hifa/crecimiento & desarrollo , Lolium/metabolismo , Lolium/microbiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Nucleares/genética , Simbiosis/genética , Factores de Transcripción/metabolismo
18.
Breed Sci ; 71(3): 299-312, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34776737

RESUMEN

Advances in next generation sequencing (NGS)-based methodologies have accelerated the identifications of simple genetic variants such as point mutations and small insertions/deletions (InDels). Structural variants (SVs) including large InDels and rearrangements provide vital sources of genetic diversity for plant breeding. However, their analysis remains a challenge due to their complex nature. Consequently, novel NGS-based approaches are needed to rapidly and accurately identify SVs. Here, we present an NGS-based bulked-segregant analysis (BSA) technique called Sat-BSA (SVs associated with traits) for identifying SVs controlling traits of interest in crops. Sat-BSA targets allele frequencies at all SNP positions to first identify candidate genomic regions associated with a trait, which is then reconstructed by long reads-based local de novo assembly. Finally, the association between SVs, RNA-seq-based gene expression patterns and trait is evaluated for multiple cultivars to narrow down the candidate genes. We applied Sat-BSA to segregating F2 progeny obtained from crosses between turnip cultivars with different tuber colors and successfully isolated two genes harboring SVs that are responsible for tuber phenotypes. The current study demonstrates the utility of Sat-BSA for the identification of SVs associated with traits of interest in species with large and heterozygous genomes.

19.
J Biol Chem ; 294(35): 13006-13016, 2019 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-31296569

RESUMEN

Unconventional integrated domains in plant intracellular immune receptors of the nucleotide-binding leucine-rich repeat (NLRs) type can directly bind translocated effector proteins from pathogens and thereby initiate an immune response. The rice (Oryza sativa) immune receptor pairs Pik-1/Pik-2 and RGA5/RGA4 both use integrated heavy metal-associated (HMA) domains to bind the effectors AVR-Pik and AVR-Pia, respectively, from the rice blast fungal pathogen Magnaporthe oryzae These effectors both belong to the MAX effector family and share a core structural fold, despite being divergent in sequence. How integrated domains in NLRs maintain specificity of effector recognition, even of structurally similar effectors, has implications for understanding plant immune receptor evolution and function. Here, using plant cell death and pathogenicity assays and protein-protein interaction analyses, we show that the rice NLR pair Pikp-1/Pikp-2 triggers an immune response leading to partial disease resistance toward the "mis-matched" effector AVR-Pia in planta and that the Pikp-HMA domain binds AVR-Pia in vitro We observed that the HMA domain from another Pik-1 allele, Pikm, cannot bind AVR-Pia, and it does not trigger a plant response. The crystal structure of Pikp-HMA bound to AVR-Pia at 1.9 Å resolution revealed a binding interface different from those formed with AVR-Pik effectors, suggesting plasticity in integrated domain-effector interactions. The results of our work indicate that a single NLR immune receptor can bait multiple pathogen effectors via an integrated domain, insights that may enable engineering plant immune receptors with extended disease resistance profiles.


Asunto(s)
Magnaporthe/inmunología , Proteínas NLR/inmunología , Oryza/inmunología , Enfermedades de las Plantas/inmunología , Modelos Moleculares , Proteínas NLR/química , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Unión Proteica
20.
Mol Plant Microbe Interact ; 33(12): 1366-1380, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32876529

RESUMEN

Plants recognize pathogen-associated molecular patterns (PAMPs) to activate PAMP-triggered immunity (PTI). However, our knowledge of PTI signaling remains limited. In this report, we introduce Lumi-Map, a high-throughput platform for identifying causative single-nucleotide polymorphisms (SNPs) for studying PTI signaling components. In Lumi-Map, a transgenic reporter plant line is produced that contains a firefly luciferase (LUC) gene driven by a defense gene promoter, which generates luminescence upon PAMP treatment. The line is mutagenized and the mutants with altered luminescence patterns are screened by a high-throughput real-time bioluminescence monitoring system. Selected mutants are subjected to MutMap analysis, a whole-genome sequencing-based method of rapid mutation identification, to identify the causative SNP responsible for the luminescence pattern change. We generated nine transgenic Arabidopsis reporter lines expressing the LUC gene fused to multiple promoter sequences of defense-related genes. These lines generate luminescence upon activation of FLAGELLIN-SENSING 2 (FLS2) by flg22, a PAMP derived from bacterial flagellin. We selected the WRKY29-promoter reporter line to identify mutants in the signaling pathway downstream of FLS2. After screening 24,000 ethylmethanesulfonate-induced mutants of the reporter line, we isolated 22 mutants with altered WRKY29 expression upon flg22 treatment (abbreviated as awf mutants). Although five flg22-insensitive awf mutants harbored mutations in FLS2 itself, Lumi-Map revealed three genes not previously associated with PTI. Lumi-Map has the potential to identify novel PAMPs and their receptors as well as signaling components downstream of the receptors.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Pruebas Genéticas , Mutación , Inmunidad de la Planta , Arabidopsis/genética , Arabidopsis/inmunología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Pruebas Genéticas/métodos , Luciferasas/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos , Inmunidad de la Planta/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA