Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 44(7): 1601-1616, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38660803

RESUMEN

BACKGROUND: RAB27A is a member of the RAS oncogene superfamily of GTPases and regulates cell secretory function. It, is expressed within blood vessels and perivascular adipose tissue. We hypothesized that loss of RAB27A would alter cardiovascular function. METHODS: Body weight of Rab27aash mice was measured from 2 to 18 months of age, along with glucose resorption at 6 and 12 months of age and glucose sensitivity at 18 months of age. Body weight and cellular and molecular features of perivascular adipose tissue and aortic tissue were examined in a novel C57BL/6J Rab27a null strain. Analyses included morphometric quantification and proteomic analyses. Wire myography measured vasoreactivity, and echocardiography measured cardiac function. Comparisons across ages and genotypes were evaluated via 2-way ANOVA with multiple comparison testing. Significance for myography was determined via 4-parameter nonlinear regression testing. RESULTS: Genome-wide association data linked rare human RAB27A variants with body mass index and glucose handling. Changes in glucose tolerance were observed in Rab27aash male mice at 18 months of age. In WT (wild-type) and Rab27a null male mice, body weight, adipocyte lipid area, and aortic area increased with age. In female mice, only body weight increased with age, independent of RAB27A presence. Protein signatures from male Rab27a null mice suggested greater associations with cardiovascular and metabolic phenotypes compared with female tissues. Wire myography results showed Rab27a null males exhibited increased vasoconstriction and reduced vasodilation at 8 weeks of age. Rab27a null females exhibited increased vasoconstriction and vasodilation at 20 weeks of age. Consistent with these vascular changes, male Rab27a null mice experienced age-related cardiomyopathy, with severe differences observed by 21 weeks of age. CONCLUSIONS: Global RAB27A loss impacted perivascular adipose tissue and thoracic aorta proteomic signatures, altered vasocontractile responses, and decreased left ventricular ejection fraction in mice.


Asunto(s)
Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas rab27 de Unión a GTP , Animales , Proteínas rab27 de Unión a GTP/genética , Proteínas rab27 de Unión a GTP/metabolismo , Masculino , Femenino , Ratones , Fenotipo , Tejido Adiposo/metabolismo , Vasodilatación , Vasoconstricción , Factores de Edad , Proteómica , Factores Sexuales , Aorta/metabolismo , Aorta/fisiopatología , Humanos
2.
J Vasc Res ; 59(1): 43-49, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34736260

RESUMEN

Quantification of adipocyte size and number is routinely performed for white adipose tissues using existing image analysis software. However, thermogenic adipose tissue has multilocular adipocytes, making it difficult to distinguish adipocyte cell borders and to analyze lipid proportion using existing methods. We developed a simple, standardized method to quantify lipid content of mouse thermogenic adipose tissue. This method, using FIJI analysis of hematoxylin/eosin stained sections, was highly objective and highly reproducible, with ∼99% inter-rater reliability. The method was compared to direct lipid staining of adipose tissue, with comparable results. We used our method to analyze perivascular adipose tissue (PVAT) from C57BL/6 mice on a normal chow diet, compared to calorie restriction or a high fat diet, where lipid storage phenotypes are known. Results indicate that lipid content can be estimated within mouse PVAT in a quantitative and reproducible manner, and shows correlation with previously studied molecular and physiological measures.


Asunto(s)
Tejido Adiposo/metabolismo , Procesamiento de Imagen Asistido por Computador , Metabolismo de los Lípidos , Microscopía Confocal , Microscopía Fluorescente , Termogénesis , Animales , Aorta Torácica , Restricción Calórica , Dieta Alta en Grasa , Colorantes Fluorescentes , Indoles , Ratones Endogámicos C57BL , Fenotipo , Reproducibilidad de los Resultados , Coloración y Etiquetado
3.
Obesity (Silver Spring) ; 31(1): 159-170, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36513498

RESUMEN

OBJECTIVE: Perivascular adipose tissue (PVAT) regulates vascular health. Dietary methionine restriction (MetR) impacts age-related adiposity, and this study addresses its effects in PVAT. METHODS: Male C57BL/6 mice at 8, 52, and 102 weeks of age were fed a standard (0.86%) or low-methionine (0.12%) diet for 52 weeks in 8-week-old and 52-week-old mice and for 15 weeks in 102-week-old mice. RESULTS: Mice with dietary MetR were resistant to weight gain and maintained a healthy blood profile. Aging increased lipid accumulation, and MetR reversed this phenotype. Notch signaling in inguinal white adipose tissue (iWAT) was decreased by MetR but increased in gonadal white adipose tissue. However, the Notch phenotype of brown adipose tissue (BAT) was not affected by MetR. Uncoupling protein 1 (UCP1) was increased in PVAT, iWAT, and BAT by MetR when initiated in young mice, but this effect was lost in middle-aged mice. CONCLUSIONS: Lipid in mouse PVAT peaked at 1 year of age, consistent with peak body mass. MetR reduced body weight, normalized metabolic parameters, and decreased lipid in PVAT in all age cohorts. Mice fed a MetR diet from early maturity to 1 year of age displayed an increased thermogenic adipocyte phenotype in iWAT, PVAT, and BAT, all tissues with thermogenic capacity.


Asunto(s)
Tejido Adiposo Pardo , Metionina , Ratones , Masculino , Animales , Metionina/metabolismo , Ratones Endogámicos C57BL , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Racemetionina/metabolismo , Racemetionina/farmacología , Lípidos
4.
Aging Cell ; 22(4): e13784, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36798047

RESUMEN

Neural communication between the brain and adipose tissues regulates energy expenditure and metabolism through modulation of adipose tissue functions. We have recently demonstrated that under pathophysiological conditions (obesity, diabetes, and aging), total subcutaneous white adipose tissue (scWAT) innervation is decreased ('adipose neuropathy'). With advanced age in the C57BL/6J mouse, small fiber peripheral nerve endings in adipose tissue die back, resulting in reduced contact with adipose-resident blood vessels and other cells. This vascular neuropathy and parenchymal neuropathy together likely pose a physiological challenge for tissue function. In the current work, we used the genetically diverse HET3 mouse model to investigate the incidence of peripheral neuropathy and adipose tissue dysregulation across several ages in both male and female mice. We also investigated the anti-aging treatment rapamycin, an mTOR inhibitor, as a means to prevent or reduce adipose neuropathy. We found that HET3 mice displayed a reduced neuropathy phenotype compared to inbred C56BL/6 J mice, indicating genetic contributions to this aging phenotype. Compared to female HET3 mice, male HET3 mice had worse neuropathic phenotypes by 62 weeks of age. Female HET3 mice appeared to have increased protection from neuropathy until advanced age (126 weeks), after reproductive senescence. We found that rapamycin overall had little impact on neuropathy measures, and actually worsened adipose tissue inflammation and fibrosis. Despite its success as a longevity treatment in mice, higher doses and longer delivery paradigms for rapamycin may lead to a disconnect between life span and beneficial health outcomes.


Asunto(s)
Enfermedades del Sistema Nervioso Periférico , Sirolimus , Masculino , Femenino , Animales , Ratones , Sirolimus/farmacología , Longevidad/genética , Ratones Endogámicos C57BL , Tejido Adiposo/metabolismo , Obesidad/metabolismo , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , Enfermedades del Sistema Nervioso Periférico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA