RESUMEN
OBJECTIVE: How hexanucleotide (GGGGCC) repeat expansions in C9ORF72 cause amyotrophic lateral sclerosis (ALS) remains poorly understood. Both gain- and loss-of-function mechanisms have been proposed. Evidence supporting these mechanisms in vivo is, however, incomplete. Here we determined the effect of C9orf72 loss-of-function in mice. METHODS: We generated and analyzed a conditional C9orf72 knockout mouse model. C9orf72(fl/fl) mice were crossed with Nestin-Cre mice to selectively remove C9orf72 from neurons and glial cells. Immunohistochemistry was performed to study motor neurons and neuromuscular integrity, as well as several pathological hallmarks of ALS, such as gliosis and TDP-43 mislocalization. In addition, motor function and survival were assessed. RESULTS: Neural-specific ablation of C9orf72 in conditional C9orf72 knockout mice resulted in significantly reduced body weight but did not induce motor neuron degeneration, defects in motor function, or altered survival. INTERPRETATION: Our data suggest that C9orf72 loss-of-function, by itself, is insufficient to cause motor neuron disease. These results may have important implications for the development of therapeutic strategies for C9orf72-associated ALS.
Asunto(s)
Enfermedad de la Neurona Motora/genética , Enfermedad de la Neurona Motora/patología , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Proteínas/genética , Secuencia de Aminoácidos , Animales , Proteína C9orf72 , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Datos de Secuencia Molecular , Neuronas Motoras/patologíaRESUMEN
Microvasculature is essential for the exchange of gas and nutrient for most tissues in our body. Some tissue structures such as the meniscus presents spatially confined blood vessels adjacent to non-vascularized regions. In biofabrication, mimicking the spatial distribution of such vascular components is paramount, as capillary ingrowth into non-vascularized tissues can lead to tissue matrix alterations and subsequent pathology. Multi-material three-dimensional (3D) bioprinting strategies have the potential to resolve anisotropic tissue features, although building complex constructs comprising stable vascularized and non-vascularized regions remains a major challenge to date. In this study, we developed endothelial cell-laden pro- and anti-angiogenic bioinks, supplemented with bioactive matrix-derived microfibers (MFs) that were created from type I collagen sponges (col-1) and cartilage decellularized extracellular matrix (CdECM), respectively. Human umbilical vein endothelial cell (HUVEC)-driven capillary networks started to form 2 d after bioprinting. Supplementing cartilage-derived MFs to endothelial-cell laden bioinks reduced the total length of neo-microvessels by 29%, and the number of microvessel junctions by 37% after 14 d, compared to bioinks with pro-angiogenic col-1 MFs. As a proof of concept, the bioinks were bioprinted into an anatomical meniscus shape with a biomimetic vascularized outer and non-vascularized inner region, using a gellan gum microgel suspension bath. These 3D meniscus-like constructs were cultured up to 14 d, with in the outer zone the HUVEC-, mural cell-, and col-1 MF-laden pro-angiogenic bioink, and in the inner zone a meniscus progenitor cell (MPC)- and CdECM MF-laden anti-angiogenic bioink, revealing successful spatial confinement of the nascent vascular network only in the outer zone. Further, to co-facilitate both microvessel formation and MPC-derived matrix formation, we formulated cell culture medium conditions with a temporal switch. Overall, this study provides a new strategy that could be applied to develop zonal biomimetic meniscal constructs. Moreover, the use of ECM-derived MFs to promote or inhibit capillary networks opens new possibilities for the biofabrication of tissues with anisotropic microvascular distribution. These have potential for many applications includingin vitromodels of vascular-to-avascular tissue interfaces, cancer progression, and for testing anti-angiogenic therapies.
Asunto(s)
Bioimpresión , Ingeniería de Tejidos , Bioimpresión/métodos , Cartílago , Matriz Extracelular , Células Endoteliales de la Vena Umbilical Humana , Humanos , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del Tejido/químicaRESUMEN
Osteochondral defects lack sufficient intrinsic repair capacity to regenerate functionally sound bone and cartilage tissue. To this extent, cartilage research has focused on the development of regenerative scaffolds. This article describes the development of scaffolds that are completely derived from natural cartilage extracellular matrix, coming from an equine donor. Potential applications of the scaffolds include producing allografts for cartilage repair, serving as a scaffold for osteochondral tissue engineering, and providing in vitro models to study tissue formation. By decellularizing the tissue, the donor cells are removed, but many of the natural bioactive cues are thought to be retained. The main advantage of using such a natural scaffold in comparison to a synthetically produced scaffold is that no further functionalization of polymers is required to drive osteochondral tissue regeneration. The cartilage-derived matrix scaffolds can be used for bone and cartilage tissue regeneration in both in vivo and in vitro settings.