Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Toxicol Mech Methods ; 23(5): 303-7, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23215871

RESUMEN

The study of carcinogenic potential of a variety of chemical agents such as food additives and drugs of abuse via the application of various in vitro methodologies constitutes the first step for the evaluation of their toxicogenomic profile. Considering the chromosomal theories of carcinogenesis, where it is stated that aneuploidy and chromosomal imbalance (instability) are among the main causes of carcinogenesis, chemicals capable to induce such changes in the cells could be considered as potential carcinogens. Chromosomal imbalance and aneuploidy directly affect the overall DNA content of the exposed cell as well as other cellular morpho- and densitometric features. These features can be measured by means of computerized DNA image analysis technologies and include DNA content (DNA Index), Proliferation Index, Ploidy Balance, Degree of Aneuploidy, Skewness and Kurtosis. Considering the enormous number of untested chemicals and drugs of abuse that follow non-genotoxic mechanisms of carcinogenesis, the establishment of a reliable technology for the estimation of chemically induced chromosomal imbalance is of particular importance in toxicogenomic studies. In the present article and based on our previously published work, we highlight the advantages of the applications of DNA image analysis technology in an easy-to-use experimental model for the evaluation of the potential risk of various chemicals. The use of this technology for the detection of chemically induced chromosomal instability will contribute to the development of safer regulatory directives concerning the use of chemicals in food and pharmaceutical industry, as well as in the clarification of mechanisms of action of drugs of abuse.


Asunto(s)
Inestabilidad Cromosómica , ADN/genética , Toxicogenética , Animales , Humanos
2.
Mol Biol Rep ; 39(1): 251-7, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21556769

RESUMEN

Glutaraldehyde (GA) is a high production volume chemical that is very reactive with a wide spectrum of medical, scientific and industrial applications. Concerning the genotoxic and carcinogenic effect of GA, controversial results have been reported, while in humans no studies with positive carcinogenic results for GA have been published. However, our previous study concerning the combined effects of exposure to both GA and ionising radiation (IR) in peripheral blood lymphocytes of healthy donors has shown that non-genotoxic doses of the chemical induces a statistically significant increase in chromosomal radiosensitivity. The lack of information concerning the radiosensitizing potential of GA on cancerous cells triggered us to test the radiosensitizing effect of GA on breast cancer cells (MCF7). For this purpose the G2-chromosomal radiosensitivity assay (G2-assay) was used. The assay involves G2-phase irradiation and quantitation of the chromosomal fragility in the subsequent metaphase. The experimental data show that 48 h exposure to GA, at doses that are not clastogenic to MCF7 breast cancer cells enhances G2-chromosomal radiosensitivity of this cell line. In an effort to evaluate whether the observed increase in GAs-induced G2-chromosomal radiosensitization is linked to GA-induced alterations in the cell cycle and feedback control mechanism, Mitotic Index analysis was performed. The results have shown that such a mechanism cannot be directly related to the observed GA-induced increase in G2-chromosomal radiosensitivity. Since increased G2-chromosomal radiosensitivity has been linked with cancer proneness, the radiosensitizing effect of GA at non-clastogenic doses highlights its potential carcinogenic profile.


Asunto(s)
Cromosomas Humanos/efectos de los fármacos , Fase G2/efectos de los fármacos , Glutaral/farmacología , Fármacos Sensibilizantes a Radiaciones/farmacología , Bromodesoxiuridina , Línea Celular Tumoral , Cromosomas Humanos/efectos de la radiación , Femenino , Fase G2/efectos de la radiación , Humanos , Cariotipificación , Índice Mitótico , Intercambio de Cromátides Hermanas , Estadísticas no Paramétricas
3.
Acta Biol Hung ; 63(4): 483-9, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23134605

RESUMEN

The toxicity, in terms of changes in the DNA content, of two food preservatives, sodium nitrate and sodium benzoate was studied on the protozoan Tetrahymena pyriformis using DNA image analysis technology. For this purpose, selected doses of both food additives were administered for 2 h to protozoa cultures and DNA image analysis of T. pyriformis nuclei was performed. The analysis was based on the measurement of the Mean Optical Density which represents the cellular DNA content. The results have shown that after exposure of the protozoan cultures to doses equivalent to ADI, a statistically significant increase in the macronuclear DNA content compared to the unexposed control samples was observed. The observed increase in the macronuclear DNA content is indicative of the stimulation of the mitotic process and the observed increase in MOD, accompanied by a stimulation of the protozoan proliferation activity is in consistence with this assumption. Since alterations at the DNA level such as DNA content and uncontrolled mitogenic stimulation have been linked with chemical carcinogenesis, the results of the present study add information on the toxicogenomic profile of the selected chemicals and may potentially lead to reconsideration of the excessive use of nitrates aiming to protect public health.


Asunto(s)
Replicación del ADN/efectos de los fármacos , ADN Protozoario/efectos de los fármacos , Conservantes de Alimentos/toxicidad , Macronúcleo/efectos de los fármacos , Nitratos/toxicidad , Benzoato de Sodio/toxicidad , Tetrahymena pyriformis/efectos de los fármacos , ADN Protozoario/biosíntesis , Macronúcleo/metabolismo , Mitosis/efectos de los fármacos , Medición de Riesgo , Tetrahymena pyriformis/genética , Tetrahymena pyriformis/crecimiento & desarrollo
4.
Mutat Res ; 711(1-2): 174-86, 2011 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-21185845

RESUMEN

The formation of diverse chromosomal aberrations following irradiation and the variability in radiosensitivity at different cell-cycle stages remain a long standing controversy, probably because most of the studies have focused on elucidating the enzymatic mechanisms involved using simple DNA substrates. Yet, recognition, processing and repair of DNA damage occur within the nucleoprotein complex of chromatin which is dynamic in nature, capable of rapid unfolding, disassembling, assembling and refolding. The present work reviews experimental work designed to investigate the impact of chromatin dynamics and chromosome conformation changes during cell-cycle in the formation of chromosomal aberrations. Using conventional cytogenetics and premature chromosome condensation to visualize interphase chromatin, the data presented support the hypothesis that chromatin dynamic changes during cell-cycle are important determinants in the conversion of sub-microscopic DNA lesions into chromatid breaks. Consequently, the type and yield of radiation-induced chromosomal aberrations at a given cell-cycle-stage depends on the combined effect of DNA repair processes and chromatin dynamics, which is cell-cycle-regulated and subject to up- or down-regulation following radiation exposure or genetic alterations. This new hypothesis is used to explain the variability in radiosensitivity observed at various cell-cycle-stages, among mutant cells and cells of different origin, or among different individuals, and to revisit unresolved issues and unanswered questions. In addition, it is used to better understand hypersensitivity of AT cells and to provide an improved predictive G2-assay for evaluating radiosensitivity at individual level. Finally, experimental data at single cell level obtained using hybrid cells suggest that the proposed hypothesis applies only to the irradiated component of the hybrid.


Asunto(s)
Ciclo Celular/genética , Cromátides/genética , Cromatina/fisiología , Aberraciones Cromosómicas , Daño del ADN , Animales , Ciclo Celular/efectos de la radiación , Cromátides/efectos de la radiación , Cromatina/efectos de la radiación , Daño del ADN/efectos de la radiación , Fase G2 , Humanos , Modelos Genéticos
5.
Front Public Health ; 9: 675095, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34123995

RESUMEN

While technological advances in radiation oncology have led to a more precise delivery of radiation dose and a decreased risk of side effects, there is still a need to better understand the mechanisms underlying DNA damage response (DDR) at the DNA and cytogenetic levels, and to overcome tumor resistance. To maintain genomic stability, cells have developed sophisticated signaling pathways enabling cell cycle arrest to facilitate DNA repair via the DDR-related kinases and their downstream targets, so that DNA damage or DNA replication stress induced by genotoxic therapies can be resolved. ATM, ATR, and Chk1 kinases are key mediators in DDR activation and crucial factors in treatment resistance. It is of importance, therefore, as an alternative to the conventional clonogenic assay, to establish a cytogenetic assay enabling reliable and time-efficient results in evaluating the potency of DDR inhibitors for radiosensitization. Toward this goal, the present study aims at the development and optimization of a chromosomal radiosensitivity assay using the DDR and G2-checkpoint inhibitors as a novel modification compared to the classical G2-assay. Also, it aims at investigating the strengths of this assay for rapid radiosensitivity assessments in cultured cells, and potentially, in tumor cells obtained from biopsies. Specifically, exponentially growing RPE and 82-6 hTERT human cells are irradiated during the G2/M-phase transition in the presence or absence of Caffeine, VE-821, and UCN-1 inhibitors of ATM/ATR, ATR, and Chk1, respectively, and the induced chromatid breaks are used to evaluate cell radiosensitivity and their potency for radiosensitization. The increased yield of chromatid breaks in the presence of DDR inhibitors, which underpins radiosensitization, is similar to that observed in cells from highly radiosensitive AT-patients, and is considered here as 100% radiosensitive internal control. The results highlight the potential of our modified G2-assay using VE-821 to evaluate cell radiosensitivity, the efficacy of DDR inhibitors in radiosensitization, and reinforce the concept that ATM, ATR, and Chk1 represent attractive anticancer drug targets in radiation oncology.


Asunto(s)
Cromátides , Reparación del ADN , Daño del ADN , Puntos de Control de la Fase G2 del Ciclo Celular , Humanos , Tolerancia a Radiación
6.
Int J Radiat Biol ; 97(10): 1404-1416, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34330206

RESUMEN

PURPOSE: The development of an exposure apparatus for in situ α-irradiation studies of cells. The construction of the apparatus is simple and the apparatus is maintenance free, easy to use and of low cost. This small device can be placed in an incubator, where the exposure environment is controlled. Moreover the vapor saturated incubator protects the cells from drying out, allowing long irradiation intervals. MATERIALS AND METHODS: The system includes a 234U alpha (α)-source of total activity 0.77 ± 0.03 MBq in the form of a thin disk deposited on an aluminum substrate. The α-particles emitted in the air have a mean energy of 4.9 MeV at the disk surface. Source homogeneity has been studied via Rutherford Backscattering Spectrometry. Using SRIM 2013 and Monte Carlo (MC) simulations via the MCNP6.1 code, LET and energy deposition values have been calculated for various filling gasses. Furthermore, based on these simulations, the assembly's dimensions and equivalent irradiation rate have been determined. With respect to the aforementioned dimensions, the experimental setup is constructed in a way to provide uniform irradiation of the sample. Using Sacalc3v1.4 irradiation radial homogeneity has been studied. In order to evaluate biologically our apparatus, a well-established chromosomal aberration assay has been utilized, applied in exponentially growing hamster (CHO) cells. Furthermore, immunofluorescence gamma-H2AX/53BP1 foci assay has been performed as a 'biological detector', in order to validate α-particles surface density. RESULTS: Source surface homogeneity: emission deviations do not exceed 10-15%. The optimal distance between the source and the cells for irradiation is determined to be 14.8 mm. Irradiation radial homogeneity: a deviation of 5% occurs at the first 8 mm from the center of the irradiation area, and a 10% deviation occurs after 12 mm. Chromosomal aberrations were found in good agreement with the corresponding in bibliography. CONCLUSIONS: The current technical report describes analytically the development and evaluation stages of this experimental housing; from MC simulations to the irradiation of mammalian cells and data analysis. Moreover, guidance is provided as well as a report of the variables on which critical parameters are depended, so as to make this work useful to anyone who wants to construct a similar in-house α-irradiation apparatus for radiobiological studies using mammalian cells.


Asunto(s)
Partículas alfa , Radiobiología , Partículas alfa/efectos adversos , Animales , Aberraciones Cromosómicas , Cricetinae , Método de Montecarlo
7.
Front Public Health ; 9: 701878, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34368064

RESUMEN

The effect of the reportedly low ionizing radiation doses, such as those very often delivered to patients in interventional cardiology, remains ambiguous. As interventional cardiac procedures may have a significant impact on total collective effective dose, there are radiation protection concerns for patients and physicians regarding potential late health effects. Given that very low doses (<100 mSv) are expected to be delivered during these procedures, the purpose of this study was to assess the potency and suitability of current genotoxicity biomarkers to detect and quantitate biological effects essential for risk estimation in interventional cardiology. Specifically, the biomarkers γ-H2AX foci, dicentric chromosomes, and micronuclei, which underpin radiation-induced DNA damage, were studied in blood lymphocytes of 25 adult patients before and after interventional cardiac procedures. Even though the mean values of all patients as a group for all three endpoints tested show increased yields relative to baseline following medical exposure, our results demonstrate that only the γ-H2AX biomarker enables detection of statistically significant differences at the individual level (p < 0.001) for almost all patients (91%). Furthermore, 24 h after exposure, residual γ-H2AX foci were still detectable in irradiated lymphocytes. Their decline was found to vary significantly among the individuals and the repair kinetics of γ-H2AX foci was found to range from 25 to 95.6% of their maximum values obtained.


Asunto(s)
Cardiología , Traumatismos por Radiación , Adulto , Biomarcadores , Daño del ADN , Relación Dosis-Respuesta en la Radiación , Histonas/genética , Humanos
8.
Mutat Res ; 701(1): 27-37, 2010 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-20398788

RESUMEN

Experiments were carried out to explore the correlation between chromatin conformation changes in the presence of DNA lesions and the formation of radiation-induced chromosomal aberrations. To modulate the onset and dynamics of chromatin conformation changes following irradiation, premature chromosome condensation (PCC) was induced by means of cell fusion. G2-check point abrogation by caffeine or elevated heat treatment was also applied. In addition, transfer of irradiated mitotic cells was employed either into depleted media to restrain them from proceeding through G1/S, or holding them further in colcemid to avoid M/G1 transition. To investigate the correlation between efficiency of chromosomal conformation changes and chromosomal breakage in irradiated G0 peripheral blood lymphocytes, cell fusion with different mitotic PCC-inducer cells was used. The experimental evidence supports the hypothesis that functional cell-cycle chromatin conformation changes in the presence of DNA damage are important determinants in the formation of radiation-induced chromosomal aberrations. Specifically, it is proposed here that following irradiation, chromatin structure may not be broken but instead it unfolds to a conformation that is more accessible to repair enzymes at the sites of DNA lesions. If subsequent chromosomal conformation changes occur while DNA is still being repaired, such changes will lead into an energetically unfavorable state, thus exerting mechanical stress on the unfolded chromatin at the damaged sites, which will in turn result into chromatid breaks that may not be able to restitute or mis-rejoin. Therefore, this biophysical conversion process of DNA damage into chromatid breaks as such is antagonistic to the DNA repair process. Alternatively, in the absence of chromosomal conformation changes, either DNA repair will take place efficiently or DNA misrepair will cause the formation of exchanges and chromosomal rearrangements. Consequently, the type and yield of radiation-induced chromosomal aberrations at a given cell cycle stage will be the combined effect of the interaction, at that particular stage, of the DNA repair process and the proposed conversion process of DNA lesions into chromatid breaks.


Asunto(s)
Cromatina/química , Aberraciones Cromosómicas , Daño del ADN , Radiación Ionizante , Animales , Células CHO , Cricetinae , Cricetulus , Roturas del ADN de Doble Cadena , Humanos , Interfase , Modelos Genéticos , Conformación Molecular , Fosforilación , Genética de Radiación
9.
Cancers (Basel) ; 12(9)2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32825012

RESUMEN

For precision cancer radiotherapy, high linear energy transfer (LET) particle irradiation offers a substantial advantage over photon-based irradiation. In contrast to the sparse deposition of low-density energy by χ- or γ-rays, particle irradiation causes focal DNA damage through high-density energy deposition along the particle tracks. This is characterized by the formation of multiple damage sites, comprising localized clustered patterns of DNA single- and double-strand breaks as well as base damage. These clustered DNA lesions are key determinants of the enhanced relative biological effectiveness (RBE) of energetic nuclei. However, the search for a fingerprint of particle exposure remains open, while the mechanisms underlying the induction of chromothripsis-like chromosomal rearrangements by high-LET radiation (resembling chromothripsis in tumors) await to be elucidated. In this work, we investigate the transformation of clustered DNA lesions into chromosome fragmentation, as indicated by the induction and post-irradiation repair of chromosomal damage under the dynamics of premature chromosome condensation in G0 human lymphocytes. Specifically, this study provides, for the first time, experimental evidence that particle irradiation induces localized shattering of targeted chromosome domains. Yields of chromosome fragments and shattered domains are compared with those generated by γ-rays; and the RBE values obtained are up to 28.6 for α-particles (92 keV/µm), 10.5 for C-ions (295 keV/µm), and 4.9 for protons (28.5 keV/µm). Furthermore, we test the hypothesis that particle radiation-induced persistent clustered DNA lesions and chromatin decompaction at damage sites evolve into localized chromosome shattering by subsequent chromatin condensation in a single catastrophic event-posing a critical risk for random rejoining, chromothripsis, and carcinogenesis. Consistent with this hypothesis, our results highlight the potential use of shattered chromosome domains as a fingerprint of high-LET exposure, while conforming to the new model we propose for the mechanistic origin of chromothripsis-like rearrangements.

10.
Cancers (Basel) ; 11(8)2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-31390832

RESUMEN

The discovery of chromothripsis in cancer genomes challenges the long-standing concept of carcinogenesis as the result of progressive genetic events. Despite recent advances in describing chromothripsis, its mechanistic origin remains elusive. The prevailing conception is that it arises from a massive accumulation of fragmented DNA inside micronuclei (MN), whose defective nuclear envelope ruptures or leads to aberrant DNA replication, before main nuclei enter mitosis. An alternative hypothesis is that the premature chromosome condensation (PCC) dynamics in asynchronous micronucleated cells underlie chromosome shattering in a single catastrophic event, a hallmark of chromothripsis. Specifically, when main nuclei enter mitosis, premature chromatin condensation provokes the shattering of chromosomes entrapped inside MN, if they are still undergoing DNA replication. To test this hypothesis, the agent RO-3306, a selective ATP-competitive inhibitor of CDK1 that promotes cell cycle arrest at the G2/M boundary, was used in this study to control the degree of cell cycle asynchrony between main nuclei and MN. By delaying the entrance of main nuclei into mitosis, additional time was allowed for the completion of DNA replication and duplication of chromosomes inside MN. We performed interphase cytogenetic analysis using asynchronous micronucleated cells generated by exposure of human lymphocytes to γ-rays, and heterophasic multinucleated Chinese hamster ovary (CHO) cells generated by cell fusion procedures. Our results demonstrate that the PCC dynamics during asynchronous mitosis in micronucleated or multinucleated cells are an important determinant of chromosome shattering and may underlie the mechanistic origin of chromothripsis.

11.
PLoS One ; 14(5): e0216081, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31059552

RESUMEN

A sensitive biodosimetry tool is required for rapid individualized dose estimation and risk assessment in the case of radiological or nuclear mass casualty scenarios to prioritize exposed humans for immediate medical countermeasures to reduce radiation related injuries or morbidity risks. Unlike the conventional Dicentric Chromosome Assay (DCA), which takes about 3-4 days for radiation dose estimation, cell fusion mediated Premature Chromosome Condensation (PCC) technique in G0 lymphocytes can be rapidly performed for radiation dose assessment within 6-8 hrs of sample receipt by alleviating the need for ex vivo lymphocyte proliferation for 48 hrs. Despite this advantage, the PCC technique has not yet been fully exploited for radiation biodosimetry. Realizing the advantage of G0 PCC technique that can be instantaneously applied to unstimulated lymphocytes, we evaluated the utility of G0 PCC technique in detecting ionizing radiation (IR) induced stable and unstable chromosomal aberrations for biodosimetry purposes. Our study demonstrates that PCC coupled with mFISH and mBAND techniques can efficiently detect both numerical and structural chromosome aberrations at the intra- and inter-chromosomal levels in unstimulated T- and B-lymphocytes. Collectively, we demonstrate that the G0 PCC technique has the potential for development as a biodosimetry tool for detecting unstable chromosome aberrations (chromosome fragments and dicentric chromosomes) for early radiation dose estimation and stable chromosome exchange events (translocations) for retrospective monitoring of individualized health risks in unstimulated lymphocytes.


Asunto(s)
Aberraciones Cromosómicas/efectos de la radiación , Linfocitos/efectos de la radiación , Radiometría/métodos , Animales , Células CHO/efectos de la radiación , Fusión Celular , Centrómero/efectos de la radiación , Cricetulus , Femenino , Rayos gamma/efectos adversos , Humanos , Hibridación Fluorescente in Situ , Masculino , Traumatismos por Radiación/diagnóstico , Traumatismos por Radiación/genética , Radiación Ionizante , Estudios Retrospectivos , Cariotipificación Espectral/métodos , Telómero/efectos de la radiación , Rayos X/efectos adversos
12.
Int J Radiat Oncol Biol Phys ; 103(5): 1184-1193, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30529375

RESUMEN

PURPOSE: Nontargeted effects of ionizing radiation, by which unirradiated cells and tissues are also damaged, are a relatively new paradigm in radiobiology. We recently reported radiation-induced abscopal effects (RIAEs) in normal tissues; namely, DNA damage, apoptosis, and activation of the local and systemic immune responses in C57BL6/J mice after irradiation of a small region of the body. High-dose-rate, synchrotron-generated broad beam or multiplanar x-ray microbeam radiation therapy was used with various field sizes and doses. This study explores components of the immune system involved in the generation of these abscopal effects. METHODS AND MATERIALS: The following mice with various immune deficiencies were irradiated with the microbeam radiation therapy beam: (1) SCID/IL2γR-/- (NOD SCID gamma, NSG) mice, (2) wild-type C57BL6/J mice treated with an antibody-blocking macrophage colony-stimulating factor 1 receptor, which depletes and alters the function of macrophages, and (3) chemokine ligand 2/monocyte chemotactic protein 1 null mice. Complex DNA damage (ie, DNA double-strand breaks), oxidatively induced clustered DNA lesions, and apoptotic cells in tissues distant from the irradiation site were measured as RIAE endpoints and compared with those in wild-type C57BL6/J mice. RESULTS: Wild-type mice accumulated double-strand breaks, oxidatively induced clustered DNA lesions, and apoptosis, enforcing our RIAE model. However, these effects were completely or partially abrogated in mice with immune disruption, highlighting the pivotal role of the immune system in propagation of systemic genotoxic effects after localized irradiation. CONCLUSIONS: These results underline the importance of not only delineating the best strategies for tumor control but also mitigating systemic radiation toxicity.


Asunto(s)
Apoptosis , Roturas del ADN de Doble Cadena , Sistema Inmunológico/fisiología , Traumatismos Experimentales por Radiación/inmunología , Animales , Efecto Espectador , Quimiocina CCL2/sangre , Quimiocina CCL2/genética , ADN/aislamiento & purificación , Femenino , Ligandos , Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Estrés Oxidativo , Dosis de Radiación , Traumatismos Experimentales por Radiación/etiología , Receptor de Factor Estimulante de Colonias de Macrófagos/antagonistas & inhibidores , Sincrotrones , Factor de Crecimiento Transformador beta1/sangre
13.
Int J Oncol ; 33(4): 871-9, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18813802

RESUMEN

Cells of higher eukaryotes process double strand breaks (DSBs) in their genome using a non-homologous end joining apparatus that utilizes DNA-PK and other well characterized factors (D-NHEJ). Cells with defects in D-NHEJ, repair the majority of DSBs using a slow-repair pathway which is independent of genes of the RAD52 epistasis group and functions as a backup (B-NHEJ). Recent studies implicate DNA ligase III, PARP-1 and histone H1 in this pathway of NHEJ. The present study investigates the operation of B-NHEJ in the repair of interphase chromosome breaks visualized in irradiated G0 human lymphocytes by premature chromosome condensation (PCC). Chromosome breaks are effectively repaired in human lymphocytes, but repair is significantly compromised after treatment with wortmannin, a DNA-PK inhibitor. Despite slower kinetics, cells exposed to wortmannin rejoin the majority of IR induced chromosome breaks suggesting that B-NHEJ is also functional at the chromosome level. Complementation of D-NHEJ defect in wortmannin-treated lymphocytes by newly made DNA-PK is only possible under conditions of nuclear envelope break down and premature chromosome condensation, suggesting that in interphase cells the shunting of chromosome breaks from D-NHEJ to B-NHEJ is irreversible. The understanding of chromosomal aberration formation allows mechanistic explanations for the carcinogenic potential of D-NHEJ defects.


Asunto(s)
Cromosomas/ultraestructura , Daño del ADN , Proteína Quinasa Activada por ADN/metabolismo , Epistasis Genética , Androstadienos/farmacología , Animales , Células CHO , Cricetinae , Cricetulus , Reparación del ADN , Histonas/metabolismo , Humanos , Cinética , Linfocitos/metabolismo , Modelos Biológicos , Wortmanina
14.
Mutagenesis ; 23(2): 101-9, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18227082

RESUMEN

Glutaraldehyde (GA) is a high production volume chemical that is very reactive with a wide spectrum of medical, scientific and industrial applications. Since human exposure in anthropogenic and occupational environment occurs frequently, GA has been extensively tested for genotoxic activity in vitro and in vivo. However, there are conflicting results in the literature and there is a lack of information concerning the combined effects of exposure to both GA and ionizing radiation in human cells. In the present study, the results obtained using conventional cytogenetic analysis do not suggest a statistically significant clastogenic or genotoxic activity of GA when concentrations in the range of 10(-6) to 10(-2) mM were applied. However, a 24-h pre-irradiation exposure of human peripheral blood lymphocytes (PBLs) to non-genotoxic doses of GA showed a statistically significant (P > 0.05) increase in chromosomal radiosensitivity. The observed increase may be an effect of GA-induced alterations in the cell-cycle and feedback control mechanisms during the cell-cycle transition points or it may be a consequence of an effect of GA either on the DNA repair capacity of the cells after irradiation or on the initial induction of radiation-induced chromosomal damage. To elucidate the mechanism underlying the obtained radiosensitization, conventional cytogenetics, the G2 chromosomal radiosensitivity assay and premature chromosome condensation methodologies were applied. The results support the hypothesis that pre-irradiation exposure of PBLs to GA induces radiosensitization by increasing the initial yield of chromosomal aberrations following irradiation.


Asunto(s)
Aberraciones Cromosómicas , Cromosomas Humanos/efectos de los fármacos , Reactivos de Enlaces Cruzados/toxicidad , Daño del ADN , Glutaral/toxicidad , Tolerancia a Radiación/efectos de los fármacos , Células Cultivadas , Cromosomas Humanos/efectos de la radiación , Fase G2/efectos de la radiación , Humanos , Linfocitos/efectos de la radiación
15.
Mutat Res Genet Toxicol Environ Mutagen ; 836(Pt A): 65-71, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30389164

RESUMEN

In radiation accidents and large-scale radiological emergencies, a fast and reliable triage of individuals according to their degree of exposure is important for accident management and identification of those who need medical assistance. In this work, the applicability of cell-fusion-mediated premature chromosome condensation (PCC) in G0-lymphocytes is examined for the development of a rapid, minimally invasive and automatable micro-PCC assay, which requires blood volumes of only 100 µl and can be performed in 96-well plates, towards risk assessments and categorization of individuals based on dose estimates. Chromosomal aberrations are visualized for dose-estimation analysis within two hours, without the need of blood culturing for two days, as required by conventional cytogenetics. The various steps of the standard-PCC procedure were adapted and, for the first time, lymphocytes in blood volumes of 100 µl were successfully fused with CHO-mitotics in 96-well plates of 2 ml/well. The plates are advantageous for high-throughput analysis since the various steps required are applied to all 96-wells simultaneously. Interestingly, the use of only 1.5 ml hypotonic and Carnoy's fixative per well offers high quality PCC-images, and the morphology of lymphocyte PCCs is identical to that obtained using the conventional PCC-assay, which requires much larger blood volumes and 15 ml tubes. For dose assessments, appropriate calibration curves were constructed and for PCC analysis specialized software (MetaSystems) was used. The micro-PCC assay can be combined with fluorescence in situ hybridization (FISH), using simultaneously centromeric/telomeric (C/T) peptide nucleic acid (PNA) probes. This allows dose assessments on the basis of accurate scoring of dicentric and centric ring chromosomes in G0-lymphocyte PCCs, which is particularly helpful when further evaluation into treatment-level categories of exposed individuals is needed. The micro-PCC assay has significant advantages for early triage biodosimetry when compared to other cytogenetic biodosimetry assays. It is rapid, cost-effective, and could pave the way to its subsequent automation.


Asunto(s)
Bioensayo/métodos , Aberraciones Cromosómicas/efectos de la radiación , Cromosomas Humanos/efectos de la radiación , Linfocitos/patología , Medición de Riesgo/métodos , Animales , Células CHO , Fusión Celular , Cricetulus , Urgencias Médicas , Voluntarios Sanos , Humanos , Linfocitos/efectos de la radiación , Dosis de Radiación , Liberación de Radiactividad Peligrosa
16.
Int J Oncol ; 31(1): 145-52, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17549415

RESUMEN

The hypothesis tested is that a 24-h pre-irradiation-exposure of peripheral blood lymphocytes (PBL) to the benzene metabolite hydroquinone (HQ), at doses that are non-acutely toxic (5 microM), induces a less efficient G2-M-checkpoint and enhances the G2-chromosomal radiosensitivity in a statistically significant manner (p<0.01). A less efficient G2-M-checkpoint may allow the transition of damaged cells from G2- to M-phase and experimental data in the present work support this hypothesis. In fact HQ sensitizes lymphocytes obtained from healthy donors, as they exhibit increased G2-chromosomal radiosensitivity which interestingly is similar to that observed in cases of radiosensitive cancer-prone individuals. This finding is important since a deficiency in cell cycle checkpoints and an increase in G2-chromosomal radiosensitivity are linked to chromosomal instability, cancer proneness and the development of leukemia. The observed chromosome radiosensitization may be a consequence either of an effect of HQ on the initial induction of radiation-induced chromosomal aberrations, or on the DNA repair capacity of the cells, or it may be linked to HQ-induced alterations in the cell cycle and feedback control mechanism during the G2- to M-phase transition. In order to elucidate which is the mechanism involved, conventional cytogenetics and premature chromosome condensation (PCC) methodologies were applied. The experimental data obtained support the hypothesis that HQ increases G2-chromosomal radiosensitivity in human peripheral blood lymphocytes by inducing a less efficient G2-M-checkpoint, facilitating thus the transition of damaged cells from G2- to M-phase.


Asunto(s)
Carcinógenos/toxicidad , Aberraciones Cromosómicas , Fase G2/efectos de los fármacos , Hidroquinonas/toxicidad , Tolerancia a Radiación/efectos de los fármacos , Benceno/metabolismo , División Celular/genética , Células Cultivadas , Fase G2/genética , Humanos , Cariotipificación , Linfocitos/efectos de los fármacos , Linfocitos/efectos de la radiación , Toxinas Marinas , Oxazoles/toxicidad
17.
Cancer Res ; 65(24): 11292-6, 2005 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-16357135

RESUMEN

Checkpoint abrogation in G(2) compromises repair of DNA double-strand breaks (DSB) and confers enhanced G(2) chromosomal radiosensitivity in ataxia telangiectasia (AT) cells. To directly test this hypothesis, we combined calyculin A-induced premature chromosome condensation with conventional cytogenetics to evaluate chromosome damage before and after the G(2) checkpoint in irradiated primary AT and normal human lymphocytes and their lymphoblastoid derivatives. Direct analysis of radiation damage in G(2) by premature chromosome condensation reveals practically indistinguishable levels of chromosomal breaks in AT and normal cells. Yet a 4-fold increase in metaphase chromosome damage is observed in AT cells as compared with normal cells which, in contrast to AT cells, exhibit a strong G(2) arrest manifest as an abrupt reduction in the mitotic index. Thus, an active checkpoint facilitates repair of chromosomal breaks in normal cells. Treatment with caffeine that abrogates the G(2) checkpoint without significantly affecting DSB rejoining increases metaphase chromosome damage of normal cells to the AT level but leaves unchanged interphase chromosome damage in G(2). Caffeine has no effect on any of these end points in AT cells. These observations represent the first direct evidence that the G(2) checkpoint facilitates repair of chromosome damage, presumably by supporting repair of DNA DSBs. Failure to arrest will lead to chromatin condensation and conversion of unrepaired DNA DSBs to chromosomal breaks during G(2)-to-M phase transition.


Asunto(s)
Ataxia Telangiectasia/genética , Rotura Cromosómica , Cromosomas Humanos/efectos de la radiación , Reparación del ADN , ADN/efectos de la radiación , Fase G2/efectos de la radiación , Cafeína/farmacología , Estimulantes del Sistema Nervioso Central/farmacología , Ensamble y Desensamble de Cromatina , Humanos , Linfocitos/citología , Linfocitos/metabolismo , Linfocitos/efectos de la radiación , Toxinas Marinas , Índice Mitótico , Oxazoles/farmacología , Tolerancia a Radiación , Células Tumorales Cultivadas
18.
Int J Radiat Biol ; 93(1): 48-57, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27813725

RESUMEN

PURPOSE: Dose assessment intercomparisons within the RENEB network were performed for triage biodosimetry analyzing G0-lymphocyte PCC for harmonization, standardization and optimization of the PCC assay. MATERIALS AND METHODS: Comparative analysis among different partners for dose assessment included shipment of PCC-slides and captured images to construct dose-response curves for up to 6 Gy γ-rays. Accident simulation exercises were performed to assess the suitability of the PCC assay by detecting speed of analysis and minimum number of cells required for categorization of potentially exposed individuals. RESULTS: Calibration data based on Giemsa-stained fragments in excess of 46 PCC were obtained by different partners using galleries of PCC images for each dose-point. Mean values derived from all scores yielded a linear dose-response with approximately 4 excess-fragments/cell/Gy. To unify scoring criteria, exercises were carried out using coded PCC-slides and/or coded irradiated blood samples. Analysis of samples received 24 h post-exposure was successfully performed using Giemsa staining (1 excess-fragment/cell/Gy) or centromere/telomere FISH-staining for dicentrics. CONCLUSIONS: Dose assessments by RENEB partners using appropriate calibration curves were mostly in good agreement. The PCC assay is quick and reliable for whole- or partial-body triage biodosimetry by scoring excess-fragments or dicentrics in G0-lymphocytes. Particularly, analysis of Giemsa-stained excess PCC-fragments is simple, inexpensive and its automation could increase throughput and scoring objectivity of the PCC assay.


Asunto(s)
Bioensayo/métodos , Aberraciones Cromosómicas/efectos de la radiación , Pruebas de Micronúcleos/métodos , Garantía de la Calidad de Atención de Salud , Exposición a la Radiación/análisis , Monitoreo de Radiación/métodos , Bioensayo/normas , Europa (Continente) , Humanos , Linfocitos/citología , Linfocitos/efectos de la radiación , Monitoreo de Radiación/normas , Reproducibilidad de los Resultados , Fase de Descanso del Ciclo Celular/genética , Fase de Descanso del Ciclo Celular/efectos de la radiación , Sensibilidad y Especificidad
19.
ScientificWorldJournal ; 6: 1174-90, 2006 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-17013523

RESUMEN

Nowadays, there is a constantly increasing concern regarding the mutagenic and carcinogenic potential of a variety of harmful environmental factors to which humans are exposed in their natural and anthropogenic environment. These factors exert their hazardous potential in humans' personal (diet, smoking, pharmaceuticals, cosmetics) and occupational environment that constitute part of the anthropogenic environment. It is well known that genetic damage due to these factors has dramatic implications for human health. Since most of the environmental genotoxic factors induce arrest or delay in cell cycle progression, the conventional analysis of chromosomes at metaphase may underestimate their genotoxic potential. Premature Chromosome Condensation (PCC) induced either by means of cell fusion or specific chemicals, enables the microscopic visualization of interphase chromosomes whose morphology depends on the cell cycle stage, as well as the analysis of structural and numerical aberrations at the G1 and G2 phases of the cell cycle. The PCC has been successfully used in problems involving cell cycle analysis, diagnosis and prognosis of human leukaemia, assessment of interphase chromosome malformations resulting from exposure to radiation or chemicals, as well as elucidation of the mechanisms underlying the conversion of DNA damage into chromosomal damage. In this report, particular emphasis is given to the advantages of the PCC methodology used as an alternative to conventional metaphase analysis in answering questions in the fields of radiobiology, biological dosimetry, toxicogenetics, clinical cytogenetics and experimental therapeutics.


Asunto(s)
Cromosomas Humanos/genética , Cromosomas Humanos/metabolismo , Ambiente , Técnicas Genéticas , Interfase/genética , Animales , Fusión Celular/métodos , Humanos , Linfocitos/citología , Linfocitos/metabolismo
20.
Radiat Prot Dosimetry ; 172(1-3): 230-237, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27344061

RESUMEN

High-dose assessments using the conventional dicentric assay are essentially restricted to doses up to 5 Gy and only to lymphocytes that succeed to proceed to first post-exposure mitosis. Since G2-checkpoint activation facilitates DNA damage recognition and arrest of damaged cells, caffeine is used to release G2-blocked lymphocytes overcoming the mitotic index and dicentric yield saturation problems, enabling thus dicentric analysis even at high-dose exposures. Using the fluorescence in situ hybridization technique with telomere and centromere peptide nucleic acid probes, the released lymphocytes, identified as metaphases with decondensed chromosomes following 1.5 h caffeine treatment, show increased yield of dicentrics compared to that obtained in lymphocytes that reach metaphase without G2-checkpoint abrogation by caffeine. Here, a 3-h caffeine/colcemid co-treatment before harvesting at 55 h post-exposure is used so that the dicentric analysis using Giemsa staining is based predominantly on lymphocytes released from the G2-block, increasing thus dicentric yield and enabling construction of a dose-response calibration curve with improved precision of high-dose estimates.


Asunto(s)
Cafeína/administración & dosificación , Aberraciones Cromosómicas/efectos de la radiación , Análisis Citogenético/métodos , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Linfocitos/efectos de los fármacos , Linfocitos/efectos de la radiación , Radiometría/métodos , Bioensayo/métodos , Células Cultivadas , Relación Dosis-Respuesta en la Radiación , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de la radiación , Humanos , Dosis de Radiación , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA