Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
PLoS Biol ; 22(8): e3002685, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39138140

RESUMEN

During Hedgehog (Hh) signal transduction in development and disease, the atypical G protein-coupled receptor (GPCR) SMOOTHENED (SMO) communicates with GLI transcription factors by binding the protein kinase A catalytic subunit (PKA-C) and physically blocking its enzymatic activity. Here, we show that GPCR kinase 2 (GRK2) orchestrates this process during endogenous mouse and zebrafish Hh pathway activation in the primary cilium. Upon SMO activation, GRK2 rapidly relocalizes from the ciliary base to the shaft, triggering SMO phosphorylation and PKA-C interaction. Reconstitution studies reveal that GRK2 phosphorylation enables active SMO to bind PKA-C directly. Lastly, the SMO-GRK2-PKA pathway underlies Hh signal transduction in a range of cellular and in vivo models. Thus, GRK2 phosphorylation of ciliary SMO and the ensuing PKA-C binding and inactivation are critical initiating events for the intracellular steps in Hh signaling. More broadly, our study suggests an expanded role for GRKs in enabling direct GPCR interactions with diverse intracellular effectors.


Asunto(s)
Cilios , Proteínas Quinasas Dependientes de AMP Cíclico , Quinasa 2 del Receptor Acoplado a Proteína-G , Proteínas Hedgehog , Transducción de Señal , Receptor Smoothened , Pez Cebra , Animales , Cilios/metabolismo , Receptor Smoothened/metabolismo , Receptor Smoothened/genética , Proteínas Hedgehog/metabolismo , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Ratones , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Pez Cebra/metabolismo , Fosforilación , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Células 3T3 NIH
2.
Mol Pharmacol ; 106(3): 117-128, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38902036

RESUMEN

Transmembrane signaling is a critical process by which changes in the extracellular environment are relayed to intracellular systems that induce changes in homeostasis. One family of intracellular systems are the guanine nucleotide exchange factors (GEFs), which catalyze the exchange of GTP for GDP bound to inactive guanine nucleotide binding proteins (G proteins). The resulting active G proteins then interact with downstream targets that control cell proliferation, growth, shape, migration, adhesion, and transcription. Dysregulation of any of these processes is a hallmark of cancer. The Dbl family of GEFs activates Rho family G proteins, which, in turn, alter the actin cytoskeleton and promote gene transcription. Although they have a common catalytic mechanism exercised by their highly conserved Dbl homology (DH) domains, Dbl GEFs are regulated in diverse ways, often involving the release of autoinhibition imposed by accessory domains. Among these domains, the pleckstrin homology (PH) domain is the most commonly observed and found immediately C-terminal to the DH domain. The domain has been associated with both positive and negative regulation. Recently, some atomic structures of Dbl GEFs have been determined that reemphasize the complex and central role that the PH domain can play in orchestrating regulation of the DH domain. Here, we discuss these newer structures, put them into context by cataloging the various ways that PH domains are known to contribute to signaling across the Dbl family, and discuss how the PH domain might be exploited to achieve selective inhibition of Dbl family RhoGEFs by small-molecule therapeutics. SIGNIFICANCE STATEMENT: Dysregulation via overexpression or mutation of Dbl family Rho guanine nucleotide exchange factors (GEFs) contributes to cancer and neurodegeneration. Targeting the Dbl homology catalytic domain by small-molecule therapeutics has been challenging due to its high conservation and the lack of a discrete binding pocket. By evaluating some new autoinhibitory mechanisms in the Dbl family, we demonstrate the great diversity of roles played by the regulatory domains, in particular the PH domain, and how this holds tremendous potential for the development of selective therapeutics that modulate GEF activity.


Asunto(s)
Carcinogénesis , Factores de Intercambio de Guanina Nucleótido , Factores de Intercambio de Guanina Nucleótido Rho , Humanos , Animales , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/genética , Carcinogénesis/metabolismo , Carcinogénesis/genética , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/genética , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patología , Transducción de Señal
3.
Nat Struct Mol Biol ; 31(8): 1198-1207, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38565696

RESUMEN

The conversion of phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-triphosphate by phosphoinositide 3-kinase γ (PI3Kγ) is critical for neutrophil chemotaxis and cancer metastasis. PI3Kγ is activated by Gßγ heterodimers released from G protein-coupled receptors responding to extracellular signals. Here we determined cryo-electron microscopy structures of Sus scrofa PI3Kγ-human Gßγ complexes in the presence of substrates/analogs, revealing two Gßγ binding sites: one on the p110γ helical domain and another on the p101 C-terminal domain. Comparison with PI3Kγ alone reveals conformational changes in the kinase domain upon Gßγ binding that are similar to Ras·GTP-induced changes. Assays of variants perturbing the Gßγ binding sites and interdomain contacts altered by Gßγ binding suggest that Gßγ recruits the enzyme to membranes and allosterically regulates activity via both sites. Studies of zebrafish neutrophil migration align with these findings, paving the way for in-depth investigation of Gßγ-mediated activation mechanisms in this enzyme family and drug development for PI3Kγ.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ib , Microscopía por Crioelectrón , Subunidades beta de la Proteína de Unión al GTP , Subunidades gamma de la Proteína de Unión al GTP , Animales , Fosfatidilinositol 3-Quinasa Clase Ib/metabolismo , Fosfatidilinositol 3-Quinasa Clase Ib/química , Humanos , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/química , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades beta de la Proteína de Unión al GTP/química , Sitios de Unión , Pez Cebra , Unión Proteica , Neutrófilos/metabolismo , Modelos Moleculares , Activación Enzimática , Conformación Proteica , Regulación Alostérica
4.
Nat Struct Mol Biol ; 31(8): 1189-1197, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38589608

RESUMEN

The nine different membrane-anchored adenylyl cyclase isoforms (AC1-9) in mammals are stimulated by the heterotrimeric G protein, Gαs, but their response to Gßγ regulation is isoform specific. In the present study, we report cryo-electron microscope structures of ligand-free AC5 in complex with Gßγ and a dimeric form of AC5 that could be involved in its regulation. Gßγ binds to a coiled-coil domain that links the AC transmembrane region to its catalytic core as well as to a region (C1b) that is known to be a hub for isoform-specific regulation. We confirmed the Gßγ interaction with both purified proteins and cell-based assays. Gain-of-function mutations in AC5 associated with human familial dyskinesia are located at the interface of AC5 with Gßγ and show reduced conditional activation by Gßγ, emphasizing the importance of the observed interaction for motor function in humans. We propose a molecular mechanism wherein Gßγ either prevents dimerization of AC5 or allosterically modulates the coiled-coil domain, and hence the catalytic core. As our mechanistic understanding of how individual AC isoforms are uniquely regulated is limited, studies such as this may provide new avenues for isoform-specific drug development.


Asunto(s)
Adenilil Ciclasas , Microscopía por Crioelectrón , Subunidades beta de la Proteína de Unión al GTP , Subunidades gamma de la Proteína de Unión al GTP , Adenilil Ciclasas/metabolismo , Adenilil Ciclasas/genética , Adenilil Ciclasas/química , Humanos , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/genética , Subunidades gamma de la Proteína de Unión al GTP/química , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades beta de la Proteína de Unión al GTP/genética , Subunidades beta de la Proteína de Unión al GTP/química , Modelos Moleculares , Células HEK293 , Multimerización de Proteína , Unión Proteica , Animales , Mutación , Conformación Proteica
5.
Elife ; 122024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39082940

RESUMEN

PIP3-dependent Rac exchanger 1 (P-Rex1) is abundantly expressed in neutrophils and plays central roles in chemotaxis and cancer metastasis by serving as a guanine-nucleotide exchange factor (GEF) for Rac. The enzyme is synergistically activated by PIP3 and heterotrimeric Gßγ subunits, but mechanistic details remain poorly understood. While investigating the regulation of P-Rex1 by PIP3, we discovered that Ins(1,3,4,5)P4 (IP4) inhibits P-Rex1 activity and induces large decreases in backbone dynamics in diverse regions of the protein. Cryo-electron microscopy analysis of the P-Rex1·IP4 complex revealed a conformation wherein the pleckstrin homology (PH) domain occludes the active site of the Dbl homology (DH) domain. This configuration is stabilized by interactions between the first DEP domain (DEP1) and the DH domain and between the PH domain and a 4-helix bundle (4HB) subdomain that extends from the C-terminal domain of P-Rex1. Disruption of the DH-DEP1 interface in a DH/PH-DEP1 fragment enhanced activity and led to a more extended conformation in solution, whereas mutations that constrain the occluded conformation led to decreased GEF activity. Variants of full-length P-Rex1 in which the DH-DEP1 and PH-4HB interfaces were disturbed exhibited enhanced activity during chemokine-induced cell migration, confirming that the observed structure represents the autoinhibited state in living cells. Interactions with PIP3-containing liposomes led to disruption of these interfaces and increased dynamics protein-wide. Our results further suggest that inositol phosphates such as IP4 help to inhibit basal P-Rex1 activity in neutrophils, similar to their inhibitory effects on phosphatidylinositol-3-kinase.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Microscopía por Crioelectrón , Fosfatos de Fosfatidilinositol/metabolismo , Conformación Proteica , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA