Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Comput Intell Neurosci ; 2019: 8361369, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31065256

RESUMEN

This paper proposes an artificial spiking neural network (SNN) sustaining the cognitive abstract process of spatial concept learning, embedded in virtual and real robots. Based on an operant conditioning procedure, the robots learn the relationship of horizontal/vertical and left/right visual stimuli, regardless of their specific pattern composition or their location on the images. Tests with novel patterns and locations were successfully completed after the acquisition learning phase. Results show that the SNN can adapt its behavior in real time when the rewarding rule changes.


Asunto(s)
Inteligencia Artificial , Formación de Concepto/fisiología , Aprendizaje/fisiología , Redes Neurales de la Computación , Plasticidad Neuronal/fisiología , Algoritmos , Humanos , Modelos Neurológicos , Neuronas/fisiología
2.
Front Neurorobot ; 12: 75, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30524261

RESUMEN

Visual motion detection is essential for the survival of many species. The phenomenon includes several spatial properties, not fully understood at the level of a neural circuit. This paper proposes a computational model of a visual motion detector that integrates direction and orientation selectivity features. A recent experiment in the Drosophila model highlights that stimulus orientation influences the neural response of direction cells. However, this interaction and the significance at the behavioral level are currently unknown. As such, another objective of this article is to study the effect of merging these two visual processes when contextualized in a neuro-robotic model and an operant conditioning procedure. In this work, the learning task was solved using an artificial spiking neural network, acting as the brain controller for virtual and physical robots, showing a behavior modulation from the integration of both visual processes.

3.
Front Neurorobot ; 8: 21, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25120464

RESUMEN

In this paper, we investigate the operant conditioning (OC) learning process within a bio-inspired paradigm, using artificial spiking neural networks (ASNN) to act as robot brain controllers. In biological agents, OC results in behavioral changes learned from the consequences of previous actions, based on progressive prediction adjustment from rewarding or punishing signals. In a neurorobotics context, virtual and physical autonomous robots may benefit from a similar learning skill when facing unknown and unsupervised environments. In this work, we demonstrate that a simple invariant micro-circuit can sustain OC in multiple learning scenarios. The motivation for this new OC implementation model stems from the relatively complex alternatives that have been described in the computational literature and recent advances in neurobiology. Our elementary kernel includes only a few crucial neurons, synaptic links and originally from the integration of habituation and spike-timing dependent plasticity as learning rules. Using several tasks of incremental complexity, our results show that a minimal neural component set is sufficient to realize many OC procedures. Hence, with the proposed OC module, designing learning tasks with an ASNN and a bio-inspired robot context leads to simpler neural architectures for achieving complex behaviors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA