Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(28): e2111212119, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35787044

RESUMEN

The origins of Homo, as well as the diversity and biogeographic distribution of early Homo species, remain critical outstanding issues in paleoanthropology. Debates about the recognition of early Homo, first appearance dates, and taxonomic diversity within Homo are particularly important for determining the role that southern African taxa may have played in the origins of the genus. The correct identification of Homo remains also has implications for reconstructing phylogenetic relationships between species of Australopithecus and Paranthropus, and the links between early Homo species and Homo erectus. We use microcomputed tomography and landmark-free deformation-based three-dimensional geometric morphometrics to extract taxonomically informative data from the internal structure of postcanine teeth attributed to Early Pleistocene Homo in the southern African hominin-bearing sites of Sterkfontein, Swartkrans, Drimolen, and Kromdraai B. Our results indicate that, from our sample of 23 specimens, only 4 are unambiguously attributed to Homo, 3 of them coming from Swartkrans member 1 (SK 27, SK 847, and SKX 21204) and 1 from Sterkfontein (Sts 9). Three other specimens from Sterkfontein (StW 80 and 81, SE 1508, and StW 669) approximate the Homo condition in terms of overall enamel-dentine junction shape, but retain Australopithecus-like dental traits, and their generic status remains unclear. The other specimens, including SK 15, present a dominant australopith dental signature. In light of these results, previous dietary and ecological interpretations can be reevaluated, showing that the geochemical signal of one tooth from Kromdraai (KB 5223) and two from Swartkrans (SK 96 and SKX 268) is consistent with that of australopiths.


Asunto(s)
Hominidae , Diente , Animales , Fósiles , Filogenia , Diente/diagnóstico por imagen , Microtomografía por Rayos X
2.
J Anat ; 241(2): 500-517, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35373345

RESUMEN

The Kromdraai site in South Africa has yielded numerous early hominin fossils since 1938. As a part of recent excavations within Unit P, a largely complete early hominin calcaneus (KW 6302) was discovered. Due to its role in locomotion, the calcaneus has the potential to reveal important form/function relationships. Here, we describe KW 6302 and analyze its preserved morphology relative to human and nonhuman ape calcanei, as well as calcanei attributed to Australopithecus afarensis, Australopithecus africanus, Australopithecus sediba, Homo naledi, and the Omo calcaneus (either Paranthropus or early Homo). KW 6302 calcaneal morphology is assessed using numerous quantitative metrics including linear measures, calcaneal robusticity index, relative lateral plantar process position, Achilles tendon length reconstruction, and a three-dimensional geometric morphometric sliding semilandmark analysis. KW 6302 exhibits an overall calcaneal morphology that is intermediate between humans and nonhuman apes, although closer to modern humans. KW 6302 possesses many traits that indicate it was likely well-adapted for terrestrial bipedal locomotion, including a relatively flat posterior talar facet and a large lateral plantar process that is similarly positioned to modern humans. It also retains traits that indicate that climbing may have remained a part of its locomotor repertoire, such as a relatively gracile tuber and a large peroneal trochlea. Specimens from Kromdraai have been attributed to either Paranthropus robustus or early Homo; however, there are no definitively attributed calcanei for either genus, making it difficult to taxonomically assign this specimen. KW 6302 and the Omo calcaneus, however, fall outside the range of expected variation for an extant genus, indicating that if the Omo calcaneus was Paranthropus, then KW 6302 would likely be attributed to early Homo (or vice versa).


Asunto(s)
Calcáneo , Hominidae , Animales , Evolución Biológica , Calcáneo/anatomía & histología , Fósiles , Hominidae/anatomía & histología , Humanos , Sudáfrica
3.
Am J Phys Anthropol ; 172(4): 714-722, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32449177

RESUMEN

OBJECTIVES: The Pleistocene taxon Paranthropus robustus was established in 1938 following the discovery at Kromdraai B, South Africa, of the partial cranium TM 1517a and associated mandible TM 1517b. Shortly thereafter, a distal humerus (TM 1517g), a proximal ulna (TM 1517e), and a distal hallucial phalanx (TM 1517k) were collected nearby at the site, and were considered to be associated with the holotype. TM 1517a-b represents an immature individual; however, no analysis of the potentially associated postcranial elements has investigated the presence of any endostructural remnant of recent epiphyseal closure. This study aims at tentatively detecting such traces in the three postcranial specimens from Kromdraai B. MATERIALS AND METHODS: By using µXCT techniques, we assessed the developmental stage of the TM 1517b's C-M3 roots and investigated the inner structure of TM 1517g, TM 1517e, and TM 1517k. RESULTS: The M2 shows incompletely closed root apices and the M3 a half-completed root formation stage. The distal humerus was likely completely fused, while the proximal ulna and the distal hallucial phalanx preserve endosteal traces of the diaphyseo-epiphyseal fusion process. DISCUSSION: In the hominin fossil record, there are few unambiguously associated craniodental and postcranial remains sampling immature individuals, an essential condition for assessing the taxon-specific maturational patterns. Our findings corroborate the original association of the craniodental and postcranial remains representing the P. robustus type specimen. As with other Plio-Pleistocene hominins, the odonto-postcranial maturational pattern of TM 1517 more closely fits an African great ape rather than the extant human pattern.


Asunto(s)
Huesos/anatomía & histología , Fósiles , Hominidae/anatomía & histología , Hominidae/crecimiento & desarrollo , Diente/anatomía & histología , Animales , Antropología Física , Evolución Biológica , Femenino , Masculino , Sudáfrica , Microtomografía por Rayos X
4.
J Hum Evol ; 114: 1-19, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29447752

RESUMEN

This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the co-Editors-in-Chief and the authors. The Results and Discussion of this article duplicate significant parts of book chapter "A revised stratigraphy of Kromdraai", published by L.B., R.M., R.C., F.T. and J.B. in Braga, J. and Thackeray, J.F. (Eds.), "Kromdraai. A Birthplace of Paranthropus in the Cradle of Humankind" (2016, SUN MeDIA MeTRO, pp. 31-47), https://doi.org/10.18820/9781928355076. One of the conditions of submission of a paper to Journal of Human Evolution is that authors declare explicitly that that their work is original and has not been published previously. Reuse of any data should be appropriately cited. As such this article represents an abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.

6.
Am J Phys Anthropol ; 151(2): 265-79, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23640691

RESUMEN

We report a Holocene human and animal footprint site from the Namib Sand Sea, south of Walvis Bay, Namibia. Using these data, we explore intratrail footprint variability associated with small variations in substrate properties using a "whole foot" analytical technique developed for the studies in human ichnology. We demonstrate high levels of intratrail variability as a result of variations in grain size, depositional moisture content, and the degree of sediment disturbance, all of which determine the bearing capacity of the substrate. The two principal trails were examined, which had consistent stride and step lengths, and as such variations in print typology were primarily controlled by substrate rather than locomotor mechanics. Footprint typology varies with bearing capacity such that firm substrates show limited impressions associated with areas of peak plantar pressure, whereas softer substrates are associated with deep prints with narrow heels and reduced medial longitudinal arches. Substrates of medium bearing capacity give displacement rims and proximal movement of sediment, which obscures the true form of the medial longitudinal arch. A simple conceptual model is offered which summarizes these conclusions and is presented as a basis for further investigation into the control of substrate on footprint typology. The method, model, and results presented here are essential in the interpretation of any sites of greater paleoanthropological significance, such as recently reported from Ileret (1.5 Ma, Kenya; Bennett et al.: Science 323 (2009) 1197-1201).


Asunto(s)
Pie/anatomía & histología , Pie/fisiología , Hominidae/anatomía & histología , Hominidae/fisiología , Caminata/historia , Caminata/fisiología , Animales , Antropología Física , Fenómenos Biomecánicos/fisiología , Historia Antigua , Humanos , Namibia
7.
J Hum Evol ; 48(3): 301-12, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15737395

RESUMEN

Stable carbon isotope analyses have shown that South African australopiths did not have exclusively frugivorous diets, but also consumed significant quantities of C4 foods such as grasses, sedges, or animals that ate these foods. Yet, these studies have had significant limitations. For example, hominin sample sizes were relatively small, leading some to question the veracity of the claim for australopith C4 consumption. In addition, it has been difficult to determine which C4 resources were actually utilized, which is at least partially due to a lack of stable isotope data on some purported australopith foods. Here we begin to address these lacunae by presenting carbon isotope data for 14 new hominin specimens, as well as for two potential C4 foods (termites and sedges). The new data confirm that non-C3 foods were heavily utilized by australopiths, making up about 40% and 35% of Australopithecus and Paranthropus diets respectively. Most termites in the savanna-woodland biome of the Kruger National Park, South Africa, have intermediate carbon isotope compositions indicating mixed C3/C4 diets. Only 28% of the sedges in Kruger were C4, and few if any had well-developed rhizomes and tubers that make some sedges attractive foods. We conclude that although termites and sedges might have contributed to the C4 signal in South African australopiths, other C4 foods were also important. Lastly, we suggest that the consumption of C4 foods is a fundamental hominin trait that, along with bipedalism, allowed australopiths to pioneer increasingly open and seasonal environments.


Asunto(s)
Isótopos de Carbono/metabolismo , Cyperus/metabolismo , Ambiente , Conducta Alimentaria/fisiología , Hominidae/metabolismo , Isópteros/metabolismo , Animales , Historia Antigua , Humanos , Fenómenos Fisiológicos de la Nutrición/fisiología , Paleontología/métodos , Sudáfrica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA